Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):173–180. doi: 10.1042/BJ20031796

A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells.

Stuart D Shumway 1, Shigeki Miyamoto 1
PMCID: PMC1224141  PMID: 14763901

Abstract

Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway.

Full Text

The Full Text of this article is available as a PDF (543.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendall H. H., Sikes M. L., Ballard D. W., Oltz E. M. An intact NF-kappa B signaling pathway is required for maintenance of mature B cell subsets. Mol Immunol. 1999 Feb;36(3):187–195. doi: 10.1016/s0161-5890(99)00031-0. [DOI] [PubMed] [Google Scholar]
  2. Claudio Estefania, Brown Keith, Park Sun, Wang Hongshan, Siebenlist Ulrich. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol. 2002 Sep 23;3(10):958–965. doi: 10.1038/ni842. [DOI] [PubMed] [Google Scholar]
  3. Coope H. J., Atkinson P. G. P., Huhse B., Belich M., Janzen J., Holman M. J., Klaus G. G. B., Johnston L. H., Ley S. C. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J. 2002 Oct 15;21(20):5375–5385. doi: 10.1093/emboj/cdf542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dejardin Emmanuel, Droin Nathalie M., Delhase Mireille, Haas Elvira, Cao Yixue, Makris Constantin, Li Zhi-Wei, Karin Michael, Ware Carl F., Green Douglas R. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity. 2002 Oct;17(4):525–535. doi: 10.1016/s1074-7613(02)00423-5. [DOI] [PubMed] [Google Scholar]
  5. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dobrzanski P., Ryseck R. P., Bravo R. Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. EMBO J. 1994 Oct 3;13(19):4608–4616. doi: 10.1002/j.1460-2075.1994.tb06782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doerre S., Corley R. B. Constitutive nuclear translocation of NF-kappa B in B cells in the absence of I kappa B degradation. J Immunol. 1999 Jul 1;163(1):269–277. [PubMed] [Google Scholar]
  8. Fields E. R., Seufzer B. J., Oltz E. M., Miyamoto S. A switch in distinct I kappa B alpha degradation mechanisms mediates constitutive NF-kappa B activation in mature B cells. J Immunol. 2000 May 1;164(9):4762–4767. doi: 10.4049/jimmunol.164.9.4762. [DOI] [PubMed] [Google Scholar]
  9. Gao Y., Lecker S., Post M. J., Hietaranta A. J., Li J., Volk R., Li M., Sato K., Saluja A. K., Steer M. L. Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide. J Clin Invest. 2000 Aug;106(3):439–448. doi: 10.1172/JCI9826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geier E., Pfeifer G., Wilm M., Lucchiari-Hartz M., Baumeister W., Eichmann K., Niedermann G. A giant protease with potential to substitute for some functions of the proteasome. Science. 1999 Feb 12;283(5404):978–981. doi: 10.1126/science.283.5404.978. [DOI] [PubMed] [Google Scholar]
  11. Gerondakis Steve, Strasser Andreas. The role of Rel/NF-kappaB transcription factors in B lymphocyte survival. Semin Immunol. 2003 Jun;15(3):159–166. doi: 10.1016/s1044-5323(03)00036-8. [DOI] [PubMed] [Google Scholar]
  12. Ghosh Sankar, Karin Michael. Missing pieces in the NF-kappaB puzzle. Cell. 2002 Apr;109 (Suppl):S81–S96. doi: 10.1016/s0092-8674(02)00703-1. [DOI] [PubMed] [Google Scholar]
  13. Glas R., Bogyo M., McMaster J. S., Gaczynska M., Ploegh H. L. A proteolytic system that compensates for loss of proteasome function. Nature. 1998 Apr 9;392(6676):618–622. doi: 10.1038/33443. [DOI] [PubMed] [Google Scholar]
  14. Grossmann M., Metcalf D., Merryfull J., Beg A., Baltimore D., Gerondakis S. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11848–11853. doi: 10.1073/pnas.96.21.11848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grumont R. J., Gerondakis S. The subunit composition of NF-kappa B complexes changes during B-cell development. Cell Growth Differ. 1994 Dec;5(12):1321–1331. [PubMed] [Google Scholar]
  16. Huang T. T., Kudo N., Yoshida M., Miyamoto S. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1014–1019. doi: 10.1073/pnas.97.3.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621–663. doi: 10.1146/annurev.immunol.18.1.621. [DOI] [PubMed] [Google Scholar]
  18. Krappmann D., Scheidereit C. Regulation of NF-kappa B activity by I kappa B alpha and I kappa B beta stability. Immunobiology. 1997 Dec;198(1-3):3–13. doi: 10.1016/s0171-2985(97)80022-8. [DOI] [PubMed] [Google Scholar]
  19. Krappmann D., Wulczyn F. G., Scheidereit C. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J. 1996 Dec 2;15(23):6716–6726. [PMC free article] [PubMed] [Google Scholar]
  20. Liou H. C., Sha W. C., Scott M. L., Baltimore D. Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation. Mol Cell Biol. 1994 Aug;14(8):5349–5359. doi: 10.1128/mcb.14.8.5349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyamoto S., Chiao P. J., Verma I. M. Enhanced I kappa B alpha degradation is responsible for constitutive NF-kappa B activity in mature murine B-cell lines. Mol Cell Biol. 1994 May;14(5):3276–3282. doi: 10.1128/mcb.14.5.3276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miyamoto S., Schmitt M. J., Verma I. M. Qualitative changes in the subunit composition of kappa B-binding complexes during murine B-cell differentiation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5056–5060. doi: 10.1073/pnas.91.11.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miyamoto S., Seufzer B. J., Shumway S. D. Novel IkappaB alpha proteolytic pathway in WEHI231 immature B cells. Mol Cell Biol. 1998 Jan;18(1):19–29. doi: 10.1128/mcb.18.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Phillips R. J., Ghosh S. Regulation of IkappaB beta in WEHI 231 mature B cells. Mol Cell Biol. 1997 Aug;17(8):4390–4396. doi: 10.1128/mcb.17.8.4390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rice N. R., Ernst M. K. In vivo control of NF-kappa B activation by I kappa B alpha. EMBO J. 1993 Dec;12(12):4685–4695. doi: 10.1002/j.1460-2075.1993.tb06157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986 Aug 29;46(5):705–716. doi: 10.1016/0092-8674(86)90346-6. [DOI] [PubMed] [Google Scholar]
  27. Senftleben U., Cao Y., Xiao G., Greten F. R., Krähn G., Bonizzi G., Chen Y., Hu Y., Fong A., Sun S. C. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001 Aug 24;293(5534):1495–1499. doi: 10.1126/science.1062677. [DOI] [PubMed] [Google Scholar]
  28. Shaffer A. L., Peng A., Schlissel M. S. In vivo occupancy of the kappa light chain enhancers in primary pro- and pre-B cells: a model for kappa locus activation. Immunity. 1997 Feb;6(2):131–143. doi: 10.1016/s1074-7613(00)80420-3. [DOI] [PubMed] [Google Scholar]
  29. Shen J., Channavajhala P., Seldin D. C., Sonenshein G. E. Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol. 2001 Nov 1;167(9):4919–4925. doi: 10.4049/jimmunol.167.9.4919. [DOI] [PubMed] [Google Scholar]
  30. Shumway S. D., Maki M., Miyamoto S. The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain. J Biol Chem. 1999 Oct 22;274(43):30874–30881. doi: 10.1074/jbc.274.43.30874. [DOI] [PubMed] [Google Scholar]
  31. Shumway Stuart D., Berchtold Craig M., Gould Michael N., Miyamoto Shigeki. Evidence for unique calmodulin-dependent nuclear factor-kappaB regulation in WEHI-231 B cells. Mol Pharmacol. 2002 Jan;61(1):177–185. doi: 10.1124/mol.61.1.177. [DOI] [PubMed] [Google Scholar]
  32. Tam W. F., Wang W., Sen R. Cell-specific association and shuttling of IkappaBalpha provides a mechanism for nuclear NF-kappaB in B lymphocytes. Mol Cell Biol. 2001 Jul;21(14):4837–4846. doi: 10.1128/MCB.21.14.4837-4846.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Antwerp D. J., Verma I. M. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol. 1996 Nov;16(11):6037–6045. doi: 10.1128/mcb.16.11.6037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang K. K., Nath R., Posner A., Raser K. J., Buroker-Kilgore M., Hajimohammadreza I., Probert A W., Jr, Marcoux F. W., Ye Q., Takano E. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6687–6692. doi: 10.1073/pnas.93.13.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu M., Lee H., Bellas R. E., Schauer S. L., Arsura M., Katz D., FitzGerald M. J., Rothstein T. L., Sherr D. H., Sonenshein G. E. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J. 1996 Sep 2;15(17):4682–4690. [PMC free article] [PubMed] [Google Scholar]
  36. Xiao G., Harhaj E. W., Sun S. C. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001 Feb;7(2):401–409. doi: 10.1016/s1097-2765(01)00187-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES