Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):139–145. doi: 10.1042/BJ20031957

Secondary-structure characterization by far-UV CD of highly purified uncoupling protein 1 expressed in yeast.

Pierre Douette 1, Rachel Navet 1, Fabrice Bouillenne 1, Alain Brans 1, Claudine Sluse-Goffart 1, André Matagne 1, Francis E Sluse 1
PMCID: PMC1224143  PMID: 14766012

Abstract

The rat UCP1 (uncoupling protein 1) is a mitochondrial inner-membrane carrier involved in energy dissipation and heat production. We expressed UCP1 carrying a His6 epitope at its C-terminus in Saccharomyces cerevisiae mitochondria. The recombinant-tagged UCP1 was purified by immobilized metal-ion affinity chromatography to homogeneity (>95%). This made it suitable for subsequent biophysical characterization. Fluorescence resonance energy transfer experiments showed that n-dodecyl-beta-D-maltoside-solubilized UCP1-His6 retained its PN (purine nucleotide)-binding capacity. The far-UV CD spectrum of the functional protein clearly indicated the predominance of alpha-helices in the UCP1 secondary structure. The UCP1 secondary structure exhibited an alpha-helical degree of approx. 68%, which is at least 25% higher than the previously reported estimations based on computational predictions. Moreover, the helical content remained unchanged in free and PN-loaded UCP1. A homology model of the first repeat of UCP1, built on the basis of X-ray-solved close parent, the ADP/ATP carrier, strengthened the CD experimental results. Our experimental and computational results indicate that (i) alpha-helices are the major component of UCP1 secondary structure; (ii) PN-binding mechanism does not involve significant secondary-structure rearrangement; and (iii) UCP1 shares similar secondary-structure characteristics with the ADP/ATP carrier, at least for the first repeat.

Full Text

The Full Text of this article is available as a PDF (311.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson Jeff, Smirnova Irina, Kasho Vladimir, Verner Gillian, Kaback H. Ronald, Iwata So. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003 Aug 1;301(5633):610–615. doi: 10.1126/science.1088196. [DOI] [PubMed] [Google Scholar]
  2. Bathgate B., Freebairn E. M., Greenland A. J., Reid G. A. Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol Microbiol. 1992 Feb;6(3):363–370. doi: 10.1111/j.1365-2958.1992.tb01479.x. [DOI] [PubMed] [Google Scholar]
  3. Brejc K., van Dijk W. J., Klaassen R. V., Schuurmans M., van Der Oost J., Smit A. B., Sixma T. K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001 May 17;411(6835):269–276. doi: 10.1038/35077011. [DOI] [PubMed] [Google Scholar]
  4. Compton L. A., Johnson W. C., Jr Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem. 1986 May 15;155(1):155–167. doi: 10.1016/0003-2697(86)90241-1. [DOI] [PubMed] [Google Scholar]
  5. Daum G., Böhni P. C., Schatz G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem. 1982 Nov 10;257(21):13028–13033. [PubMed] [Google Scholar]
  6. Echtay K. S., Winkler E., Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000 Nov 30;408(6812):609–613. doi: 10.1038/35046114. [DOI] [PubMed] [Google Scholar]
  7. Fiore C., Trézéguet V., Roux P., Le Saux A., Noël F., Schwimmer C., Arlot D., Dianoux A. C., Lauquin G. J., Brandolin G. Purification of histidine-tagged mitochondrial ADP/ATP carrier: influence of the conformational states of the C-terminal region. Protein Expr Purif. 2000 Jun;19(1):57–65. doi: 10.1006/prep.2000.1213. [DOI] [PubMed] [Google Scholar]
  8. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  9. Huang S. G., Klingenberg M. Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: thermodynamics and kinetics of binding and the control by pH. Biochemistry. 1995 Jan 10;34(1):349–360. doi: 10.1021/bi00001a043. [DOI] [PubMed] [Google Scholar]
  10. Jekabsons Mika B., Echtay Karim S., Brand Martin D. Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochem J. 2002 Sep 1;366(Pt 2):565–571. doi: 10.1042/BJ20020469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  12. Kaback H. R., Frillingos S., Jung H., Jung K., Privé G. G., Ujwal M. L., Weitzman C., Wu J., Zen K. The lactose permease meets Frankenstein. J Exp Biol. 1994 Nov;196:183–195. doi: 10.1242/jeb.196.1.183. [DOI] [PubMed] [Google Scholar]
  13. Klingenberg M., Echtay K. S. Uncoupling proteins: the issues from a biochemist point of view. Biochim Biophys Acta. 2001 Mar 1;1504(1):128–143. doi: 10.1016/s0005-2728(00)00242-5. [DOI] [PubMed] [Google Scholar]
  14. Klingenberg M. Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem Sci. 1990 Mar;15(3):108–112. doi: 10.1016/0968-0004(90)90194-g. [DOI] [PubMed] [Google Scholar]
  15. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  16. Lin C. S., Klingenberg M. Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry. 1982 Jun 8;21(12):2950–2956. doi: 10.1021/bi00541a023. [DOI] [PubMed] [Google Scholar]
  17. Lin C. S., Klingenberg M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 1980 May 5;113(2):299–303. doi: 10.1016/0014-5793(80)80613-2. [DOI] [PubMed] [Google Scholar]
  18. Lobley A., Whitmore L., Wallace B. A. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics. 2002 Jan;18(1):211–212. doi: 10.1093/bioinformatics/18.1.211. [DOI] [PubMed] [Google Scholar]
  19. Manavalan P., Johnson W. C., Jr Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem. 1987 Nov 15;167(1):76–85. doi: 10.1016/0003-2697(87)90135-7. [DOI] [PubMed] [Google Scholar]
  20. Mao D., Wachter E., Wallace B. A. Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry. 1982 Sep 28;21(20):4960–4968. doi: 10.1021/bi00263a020. [DOI] [PubMed] [Google Scholar]
  21. Mielke D. L., Wallace B. A. Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. J Biol Chem. 1988 Mar 5;263(7):3177–3182. [PubMed] [Google Scholar]
  22. Miroux B., Frossard V., Raimbault S., Ricquier D., Bouillaud F. The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J. 1993 Oct;12(10):3739–3745. doi: 10.1002/j.1460-2075.1993.tb06051.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miyazawa Atsuo, Fujiyoshi Yoshinori, Unwin Nigel. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 2003 Jun 26;423(6943):949–955. doi: 10.1038/nature01748. [DOI] [PubMed] [Google Scholar]
  24. Murdza-Inglis D. L., Patel H. V., Freeman K. B., Jezek P., Orosz D. E., Garlid K. D. Functional reconstitution of rat uncoupling protein following its high level expression in yeast. J Biol Chem. 1991 Jun 25;266(18):11871–11875. [PubMed] [Google Scholar]
  25. Nelson D. R., Felix C. M., Swanson J. M. Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol. 1998 Mar 27;277(2):285–308. doi: 10.1006/jmbi.1997.1594. [DOI] [PubMed] [Google Scholar]
  26. Pebay-Peyroula Eva, Dahout-Gonzalez Cécile, Kahn Richard, Trézéguet Véronique, Lauquin Guy J-M, Brandolin Gérard. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003 Nov 6;426(6962):39–44. doi: 10.1038/nature02056. [DOI] [PubMed] [Google Scholar]
  27. Runswick M. J., Powell S. J., Nyren P., Walker J. E. Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 1987 May;6(5):1367–1373. doi: 10.1002/j.1460-2075.1987.tb02377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sreerama N., Venyaminov S. Y., Woody R. W. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. 1999 Feb;8(2):370–380. doi: 10.1110/ps.8.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  30. Sreerama N., Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000 Dec 15;287(2):252–260. doi: 10.1006/abio.2000.4880. [DOI] [PubMed] [Google Scholar]
  31. Stuart J. A., Harper J. A., Brindle K. M., Jekabsons M. B., Brand M. D. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J. 2001 Jun 15;356(Pt 3):779–789. doi: 10.1042/0264-6021:3560779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walker J. E., Runswick M. J. The mitochondrial transport protein superfamily. J Bioenerg Biomembr. 1993 Oct;25(5):435–446. doi: 10.1007/BF01108401. [DOI] [PubMed] [Google Scholar]
  33. Wallace B. A., Lees J. G., Orry A. J. W., Lobley A., Janes Robert W. Analyses of circular dichroism spectra of membrane proteins. Protein Sci. 2003 Apr;12(4):875–884. doi: 10.1110/ps.0229603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wallace B. A., Mao D. Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Anal Biochem. 1984 Nov 1;142(2):317–328. doi: 10.1016/0003-2697(84)90471-8. [DOI] [PubMed] [Google Scholar]
  35. Wallace B. A., Teeters C. L. Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry. 1987 Jan 13;26(1):65–70. doi: 10.1021/bi00375a010. [DOI] [PubMed] [Google Scholar]
  36. el Moualij B., Duyckaerts C., Lamotte-Brasseur J., Sluse F. E. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast. 1997 May;13(6):573–581. doi: 10.1002/(SICI)1097-0061(199705)13:6<573::AID-YEA107>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES