Abstract
The rat UCP1 (uncoupling protein 1) is a mitochondrial inner-membrane carrier involved in energy dissipation and heat production. We expressed UCP1 carrying a His6 epitope at its C-terminus in Saccharomyces cerevisiae mitochondria. The recombinant-tagged UCP1 was purified by immobilized metal-ion affinity chromatography to homogeneity (>95%). This made it suitable for subsequent biophysical characterization. Fluorescence resonance energy transfer experiments showed that n-dodecyl-beta-D-maltoside-solubilized UCP1-His6 retained its PN (purine nucleotide)-binding capacity. The far-UV CD spectrum of the functional protein clearly indicated the predominance of alpha-helices in the UCP1 secondary structure. The UCP1 secondary structure exhibited an alpha-helical degree of approx. 68%, which is at least 25% higher than the previously reported estimations based on computational predictions. Moreover, the helical content remained unchanged in free and PN-loaded UCP1. A homology model of the first repeat of UCP1, built on the basis of X-ray-solved close parent, the ADP/ATP carrier, strengthened the CD experimental results. Our experimental and computational results indicate that (i) alpha-helices are the major component of UCP1 secondary structure; (ii) PN-binding mechanism does not involve significant secondary-structure rearrangement; and (iii) UCP1 shares similar secondary-structure characteristics with the ADP/ATP carrier, at least for the first repeat.
Full Text
The Full Text of this article is available as a PDF (311.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson Jeff, Smirnova Irina, Kasho Vladimir, Verner Gillian, Kaback H. Ronald, Iwata So. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003 Aug 1;301(5633):610–615. doi: 10.1126/science.1088196. [DOI] [PubMed] [Google Scholar]
- Bathgate B., Freebairn E. M., Greenland A. J., Reid G. A. Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol Microbiol. 1992 Feb;6(3):363–370. doi: 10.1111/j.1365-2958.1992.tb01479.x. [DOI] [PubMed] [Google Scholar]
- Brejc K., van Dijk W. J., Klaassen R. V., Schuurmans M., van Der Oost J., Smit A. B., Sixma T. K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001 May 17;411(6835):269–276. doi: 10.1038/35077011. [DOI] [PubMed] [Google Scholar]
- Compton L. A., Johnson W. C., Jr Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem. 1986 May 15;155(1):155–167. doi: 10.1016/0003-2697(86)90241-1. [DOI] [PubMed] [Google Scholar]
- Daum G., Böhni P. C., Schatz G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem. 1982 Nov 10;257(21):13028–13033. [PubMed] [Google Scholar]
- Echtay K. S., Winkler E., Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000 Nov 30;408(6812):609–613. doi: 10.1038/35046114. [DOI] [PubMed] [Google Scholar]
- Fiore C., Trézéguet V., Roux P., Le Saux A., Noël F., Schwimmer C., Arlot D., Dianoux A. C., Lauquin G. J., Brandolin G. Purification of histidine-tagged mitochondrial ADP/ATP carrier: influence of the conformational states of the C-terminal region. Protein Expr Purif. 2000 Jun;19(1):57–65. doi: 10.1006/prep.2000.1213. [DOI] [PubMed] [Google Scholar]
- Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
- Huang S. G., Klingenberg M. Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: thermodynamics and kinetics of binding and the control by pH. Biochemistry. 1995 Jan 10;34(1):349–360. doi: 10.1021/bi00001a043. [DOI] [PubMed] [Google Scholar]
- Jekabsons Mika B., Echtay Karim S., Brand Martin D. Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochem J. 2002 Sep 1;366(Pt 2):565–571. doi: 10.1042/BJ20020469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
- Kaback H. R., Frillingos S., Jung H., Jung K., Privé G. G., Ujwal M. L., Weitzman C., Wu J., Zen K. The lactose permease meets Frankenstein. J Exp Biol. 1994 Nov;196:183–195. doi: 10.1242/jeb.196.1.183. [DOI] [PubMed] [Google Scholar]
- Klingenberg M., Echtay K. S. Uncoupling proteins: the issues from a biochemist point of view. Biochim Biophys Acta. 2001 Mar 1;1504(1):128–143. doi: 10.1016/s0005-2728(00)00242-5. [DOI] [PubMed] [Google Scholar]
- Klingenberg M. Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem Sci. 1990 Mar;15(3):108–112. doi: 10.1016/0968-0004(90)90194-g. [DOI] [PubMed] [Google Scholar]
- Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- Lin C. S., Klingenberg M. Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry. 1982 Jun 8;21(12):2950–2956. doi: 10.1021/bi00541a023. [DOI] [PubMed] [Google Scholar]
- Lin C. S., Klingenberg M. Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 1980 May 5;113(2):299–303. doi: 10.1016/0014-5793(80)80613-2. [DOI] [PubMed] [Google Scholar]
- Lobley A., Whitmore L., Wallace B. A. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics. 2002 Jan;18(1):211–212. doi: 10.1093/bioinformatics/18.1.211. [DOI] [PubMed] [Google Scholar]
- Manavalan P., Johnson W. C., Jr Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem. 1987 Nov 15;167(1):76–85. doi: 10.1016/0003-2697(87)90135-7. [DOI] [PubMed] [Google Scholar]
- Mao D., Wachter E., Wallace B. A. Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry. 1982 Sep 28;21(20):4960–4968. doi: 10.1021/bi00263a020. [DOI] [PubMed] [Google Scholar]
- Mielke D. L., Wallace B. A. Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. J Biol Chem. 1988 Mar 5;263(7):3177–3182. [PubMed] [Google Scholar]
- Miroux B., Frossard V., Raimbault S., Ricquier D., Bouillaud F. The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J. 1993 Oct;12(10):3739–3745. doi: 10.1002/j.1460-2075.1993.tb06051.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazawa Atsuo, Fujiyoshi Yoshinori, Unwin Nigel. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 2003 Jun 26;423(6943):949–955. doi: 10.1038/nature01748. [DOI] [PubMed] [Google Scholar]
- Murdza-Inglis D. L., Patel H. V., Freeman K. B., Jezek P., Orosz D. E., Garlid K. D. Functional reconstitution of rat uncoupling protein following its high level expression in yeast. J Biol Chem. 1991 Jun 25;266(18):11871–11875. [PubMed] [Google Scholar]
- Nelson D. R., Felix C. M., Swanson J. M. Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol. 1998 Mar 27;277(2):285–308. doi: 10.1006/jmbi.1997.1594. [DOI] [PubMed] [Google Scholar]
- Pebay-Peyroula Eva, Dahout-Gonzalez Cécile, Kahn Richard, Trézéguet Véronique, Lauquin Guy J-M, Brandolin Gérard. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003 Nov 6;426(6962):39–44. doi: 10.1038/nature02056. [DOI] [PubMed] [Google Scholar]
- Runswick M. J., Powell S. J., Nyren P., Walker J. E. Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 1987 May;6(5):1367–1373. doi: 10.1002/j.1460-2075.1987.tb02377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreerama N., Venyaminov S. Y., Woody R. W. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. 1999 Feb;8(2):370–380. doi: 10.1110/ps.8.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
- Sreerama N., Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000 Dec 15;287(2):252–260. doi: 10.1006/abio.2000.4880. [DOI] [PubMed] [Google Scholar]
- Stuart J. A., Harper J. A., Brindle K. M., Jekabsons M. B., Brand M. D. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J. 2001 Jun 15;356(Pt 3):779–789. doi: 10.1042/0264-6021:3560779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. E., Runswick M. J. The mitochondrial transport protein superfamily. J Bioenerg Biomembr. 1993 Oct;25(5):435–446. doi: 10.1007/BF01108401. [DOI] [PubMed] [Google Scholar]
- Wallace B. A., Lees J. G., Orry A. J. W., Lobley A., Janes Robert W. Analyses of circular dichroism spectra of membrane proteins. Protein Sci. 2003 Apr;12(4):875–884. doi: 10.1110/ps.0229603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. A., Mao D. Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Anal Biochem. 1984 Nov 1;142(2):317–328. doi: 10.1016/0003-2697(84)90471-8. [DOI] [PubMed] [Google Scholar]
- Wallace B. A., Teeters C. L. Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry. 1987 Jan 13;26(1):65–70. doi: 10.1021/bi00375a010. [DOI] [PubMed] [Google Scholar]
- el Moualij B., Duyckaerts C., Lamotte-Brasseur J., Sluse F. E. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast. 1997 May;13(6):573–581. doi: 10.1002/(SICI)1097-0061(199705)13:6<573::AID-YEA107>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]