Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):51–56. doi: 10.1042/BJ20031941

Human aldolase A natural mutants: relationship between flexibility of the C-terminal region and enzyme function.

Gabriella Esposito 1, Luigi Vitagliano 1, Paola Costanzo 1, Loredana Borrelli 1, Rita Barone 1, Lorenzo Pavone 1, Paola Izzo 1, Adriana Zagari 1, Francesco Salvatore 1
PMCID: PMC1224144  PMID: 14766013

Abstract

We have identified a new mutation in the FBP (fructose 1,6-bisphosphate) aldolase A gene in a child with suspected haemolytic anaemia associated with myopathic symptoms at birth and with a subsequent diagnosis of arthrogryposis multiplex congenita and pituitary ectopia. Sequence analysis of the whole gene, also performed on the patient's full-length cDNA, revealed only a Gly346-->Ser substitution in the heterozygous state. We expressed in a bacterial system the new aldolase A Gly346-->Ser mutant, and the Glu206-->Lys mutant identified by others, in a patient with an aldolase A deficit. Analysis of their functional profiles showed that the Gly346Ser mutant had the same Km as the wild-type enzyme, but a 4-fold lower kcat. The Glu206-->Lys mutant had a Km approx. 2-fold higher than that of both the Gly346-->Ser mutant and the wild-type enzyme, and a kcat value 40% less than the wild-type. The Gly346-->Ser and wild-type enzymes had the same Tm (melting temperature), which was approx. 6-7 degrees C higher than that of the Glu206-->Lys enzyme. An extensive molecular graphic analysis of the mutated enzymes, using human and rabbit aldolase A crystallographic structures, suggests that the Glu206-->Lys mutation destabilizes the aldolase A tetramer at the subunit interface, and highlights the fact that the glycine-to-serine substitution at position 346 limits the flexibility of the C-terminal region. These results also provide the first evidence that Gly346 is crucial for the correct conformation and function of aldolase A, because it governs the entry/release of the substrates into/from the enzyme cleft, and/or allows important C-terminal residues to approach the active site.

Full Text

The Full Text of this article is available as a PDF (412.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali M., Rellos P., Cox T. M. Hereditary fructose intolerance. J Med Genet. 1998 May;35(5):353–365. doi: 10.1136/jmg.35.5.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berman H. M., Bhat T. N., Bourne P. E., Feng Z., Gilliland G., Weissig H., Westbrook J. The Protein Data Bank and the challenge of structural genomics. Nat Struct Biol. 2000 Nov;7 (Suppl):957–959. doi: 10.1038/80734. [DOI] [PubMed] [Google Scholar]
  3. Beutler E., Scott S., Bishop A., Margolis N., Matsumoto F., Kuhl W. Red cell aldolase deficiency and hemolytic anemia: a new syndrome. Trans Assoc Am Physicians. 1973;86:154–166. [PubMed] [Google Scholar]
  4. Blom N., Sygusch J. Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol. 1997 Jan;4(1):36–39. doi: 10.1038/nsb0197-36. [DOI] [PubMed] [Google Scholar]
  5. Choi K. H., Mazurkie A. S., Morris A. J., Utheza D., Tolan D. R., Allen K. N. Structure of a fructose-1,6-bis(phosphate) aldolase liganded to its natural substrate in a cleavage-defective mutant at 2.3 A(,). Biochemistry. 1999 Sep 28;38(39):12655–12664. doi: 10.1021/bi9828371. [DOI] [PubMed] [Google Scholar]
  6. Choi K. H., Shi J., Hopkins C. E., Tolan D. R., Allen K. N. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Biochemistry. 2001 Nov 20;40(46):13868–13875. doi: 10.1021/bi0114877. [DOI] [PubMed] [Google Scholar]
  7. Dalby A., Dauter Z., Littlechild J. A. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. Protein Sci. 1999 Feb;8(2):291–297. doi: 10.1110/ps.8.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esposito Gabriella, Vitagliano Luigi, Santamaria Rita, Viola Antonietta, Zagari Adriana, Salvatore Francesco. Structural and functional analysis of aldolase B mutants related to hereditary fructose intolerance. FEBS Lett. 2002 Nov 6;531(2):152–156. doi: 10.1016/s0014-5793(02)03451-8. [DOI] [PubMed] [Google Scholar]
  9. Gamblin S. J., Davies G. J., Grimes J. M., Jackson R. M., Littlechild J. A., Watson H. C. Activity and specificity of human aldolases. J Mol Biol. 1991 Jun 20;219(4):573–576. doi: 10.1016/0022-2836(91)90650-u. [DOI] [PubMed] [Google Scholar]
  10. Hurst J. A., Baraitser M., Winter R. M. A syndrome of mental retardation, short stature, hemolytic anemia, delayed puberty, and abnormal facial appearance: similarities to a report of aldolase A deficiency. Am J Med Genet. 1987 Dec;28(4):965–970. doi: 10.1002/ajmg.1320280423. [DOI] [PubMed] [Google Scholar]
  11. Hutchinson E. G., Thornton J. M. PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci. 1996 Feb;5(2):212–220. doi: 10.1002/pro.5560050204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Izzo P., Costanzo P., Lupo A., Rippa E., Paolella G., Salvatore F. Human aldolase A gene. Structural organization and tissue-specific expression by multiple promoters and alternate mRNA processing. Eur J Biochem. 1988 Jul 1;174(4):569–578. doi: 10.1111/j.1432-1033.1988.tb14136.x. [DOI] [PubMed] [Google Scholar]
  13. Kishi H., Mukai T., Hirono A., Fujii H., Miwa S., Hori K. Human aldolase A deficiency associated with a hemolytic anemia: thermolabile aldolase due to a single base mutation. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8623–8627. doi: 10.1073/pnas.84.23.8623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kreuder J., Borkhardt A., Repp R., Pekrun A., Göttsche B., Gottschalk U., Reichmann H., Schachenmayr W., Schlegel K., Lampert F. Brief report: inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N Engl J Med. 1996 Apr 25;334(17):1100–1104. doi: 10.1056/NEJM199604253341705. [DOI] [PubMed] [Google Scholar]
  15. MINAKAMI S., YOSHIKAWA H. THERMODYNAMIC CONSIDERATIONS ON ERYTHROCYTE GLYCOLYSIS. Biochem Biophys Res Commun. 1965 Feb 3;18:345–349. doi: 10.1016/0006-291x(65)90711-4. [DOI] [PubMed] [Google Scholar]
  16. Maurady Amal, Zdanov Alexander, de Moissac Danielle, Beaudry Danielle, Sygusch Jurgen. A conserved glutamate residue exhibits multifunctional catalytic roles in D-fructose-1,6-bisphosphate aldolases. J Biol Chem. 2002 Jan 4;277(11):9474–9483. doi: 10.1074/jbc.M107600200. [DOI] [PubMed] [Google Scholar]
  17. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miwa S., Fujii H., Tani K., Takahashi K., Takegawa S., Fujinami N., Sakurai M., Kubo M., Tanimoto Y., Kato T. Two cases of red cell aldolase deficiency associated with hereditary hemolytic anemia in a Japanese family. Am J Hematol. 1981 Dec;11(4):425–437. doi: 10.1002/ajh.2830110412. [DOI] [PubMed] [Google Scholar]
  19. Morris A. J., Tolan D. R. Site-directed mutagenesis identifies aspartate 33 as a previously unidentified critical residue in the catalytic mechanism of rabbit aldolase A. J Biol Chem. 1993 Jan 15;268(2):1095–1100. [PubMed] [Google Scholar]
  20. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parano E., Trifiletti R. R., Barone R., Pavone V., Pavone P. Arthrogryposis multiplex congenita and pituitary ectopia. A case report. Neuropediatrics. 2000 Dec;31(6):325–327. doi: 10.1055/s-2000-12957. [DOI] [PubMed] [Google Scholar]
  22. Salvatore F., Izzo P., Paolella G. Aldolase gene and protein families: structure, expression and pathophysiology. Horiz Biochem Biophys. 1986;8:611–665. [PubMed] [Google Scholar]
  23. Santamaria R., Esposito G., Vitagliano L., Race V., Paglionico I., Zancan L., Zagari A., Salvatore F. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J. 2000 Sep 15;350(Pt 3):823–828. [PMC free article] [PubMed] [Google Scholar]
  24. Santamaria R., Scarano M. I., Esposito G., Chiandetti L., Izzo P., Salvatore F. The molecular basis of hereditary fructose intolerance in Italian children. Eur J Clin Chem Clin Biochem. 1993 Oct;31(10):675–678. doi: 10.1515/cclm.1993.31.10.675. [DOI] [PubMed] [Google Scholar]
  25. Santamaria R., Tamasi S., Del Piano G., Sebastio G., Andria G., Borrone C., Faldella G., Izzo P., Salvatore F. Molecular basis of hereditary fructose intolerance in Italy: identification of two novel mutations in the aldolase B gene. J Med Genet. 1996 Sep;33(9):786–788. doi: 10.1136/jmg.33.9.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Santamaria R., Vitagliano L., Tamasi S., Izzo P., Zancan L., Zagari A., Salvatore F. Novel six-nucleotide deletion in the hepatic fructose-1,6-bisphosphate aldolase gene in a patient with hereditary fructose intolerance and enzyme structure-function implications. Eur J Hum Genet. 1999 May-Jun;7(4):409–414. doi: 10.1038/sj.ejhg.5200299. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES