Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):67–74. doi: 10.1042/BJ20031687

Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1.

Khalequz Zaman 1, Lisa A Palmer 1, Allan Doctor 1, John F Hunt 1, Benjamin Gaston 1
PMCID: PMC1224145  PMID: 14766015

Abstract

The activities of certain nuclear regulatory proteins are modified by high concentrations of S-nitrosothiols associated with nitrosative stress. In the present study, we have studied the effect of physiological (low microM) concentrations of the endogenous S-nitrosothiol, GSNO (S-nitrosoglutathione), on the activities of nuclear regulatory proteins Sp3 and Sp1 (specificity proteins 3 and 1). Low concentrations of GSNO increased Sp3 binding, as well as Sp3-dependent transcription of the cystic fibrosis transmembrane conductance regulatory gene, cftr. However, higher GSNO levels prevented Sp3 binding, augmented Sp1 binding and prevented both cftr transcription and CFTR (cystic fibrosis transmembrane conductance regulator) expression. We conclude that low concentrations of GSNO favour Sp3 binding to 'housekeeping' genes such as cftr, whereas nitrosative stress-associated GSNO concentrations shut off Sp3-dependent transcription, possibly to redirect cellular resources. Since low micromolar concentrations of GSNO also increase the maturation and activity of a clinically common CFTR mutant, whereas higher concentrations have the opposite effect, these observations may have implications for dosing of S-nitrosylating agents used in cystic fibrosis clinical trials.

Full Text

The Full Text of this article is available as a PDF (343.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson Charlotte, Gaston Benjamin, Roomans Godfried M. S-Nitrosoglutathione induces functional DeltaF508-CFTR in airway epithelial cells. Biochem Biophys Res Commun. 2002 Sep 27;297(3):552–557. doi: 10.1016/s0006-291x(02)02245-3. [DOI] [PubMed] [Google Scholar]
  2. Askew S. C., Butler A. R., Flitney F. W., Kemp G. D., Megson I. L. Chemical mechanisms underlying the vasodilator and platelet anti-aggregating properties of S-nitroso-N-acetyl-DL-penicillamine and S-nitrosoglutathione. Bioorg Med Chem. 1995 Jan;3(1):1–9. doi: 10.1016/0968-0896(94)00139-t. [DOI] [PubMed] [Google Scholar]
  3. Chou J. L., Rozmahel R., Tsui L. C. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1991 Dec 25;266(36):24471–24476. [PubMed] [Google Scholar]
  4. Collins F. S. Cystic fibrosis: molecular biology and therapeutic implications. Science. 1992 May 8;256(5058):774–779. doi: 10.1126/science.1375392. [DOI] [PubMed] [Google Scholar]
  5. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  6. Drumm M. L., Wilkinson D. J., Smit L. S., Worrell R. T., Strong T. V., Frizzell R. A., Dawson D. C., Collins F. S. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science. 1991 Dec 20;254(5039):1797–1799. doi: 10.1126/science.1722350. [DOI] [PubMed] [Google Scholar]
  7. Gao L., Kim K. J., Yankaskas J. R., Forman H. J. Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol. 1999 Jul;277(1 Pt 1):L113–L118. doi: 10.1152/ajplung.1999.277.1.L113. [DOI] [PubMed] [Google Scholar]
  8. Gaston B., Drazen J. M., Jansen A., Sugarbaker D. A., Loscalzo J., Richards W., Stamler J. S. Relaxation of human bronchial smooth muscle by S-nitrosothiols in vitro. J Pharmacol Exp Ther. 1994 Feb;268(2):978–984. [PubMed] [Google Scholar]
  9. Gaston B., Reilly J., Drazen J. M., Fackler J., Ramdev P., Arnelle D., Mullins M. E., Sugarbaker D. J., Chee C., Singel D. J. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10957–10961. doi: 10.1073/pnas.90.23.10957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gow Andrew J., Chen Qiping, Hess Douglas T., Day Brian J., Ischiropoulos Harry, Stamler Jonathan S. Basal and stimulated protein S-nitrosylation in multiple cell types and tissues. J Biol Chem. 2002 Jan 16;277(12):9637–9640. doi: 10.1074/jbc.C100746200. [DOI] [PubMed] [Google Scholar]
  11. Grasemann H., Gaston B., Fang K., Paul K., Ratjen F. Decreased levels of nitrosothiols in the lower airways of patients with cystic fibrosis and normal pulmonary function. J Pediatr. 1999 Dec;135(6):770–772. doi: 10.1016/s0022-3476(99)70101-0. [DOI] [PubMed] [Google Scholar]
  12. Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hausladen A., Privalle C. T., Keng T., DeAngelo J., Stamler J. S. Nitrosative stress: activation of the transcription factor OxyR. Cell. 1996 Sep 6;86(5):719–729. doi: 10.1016/s0092-8674(00)80147-6. [DOI] [PubMed] [Google Scholar]
  14. Heda G. D., Marino C. R. Surface expression of the cystic fibrosis transmembrane conductance regulator mutant DeltaF508 is markedly upregulated by combination treatment with sodium butyrate and low temperature. Biochem Biophys Res Commun. 2000 May 19;271(3):659–664. doi: 10.1006/bbrc.2000.2684. [DOI] [PubMed] [Google Scholar]
  15. Holmes Kathryn W., Hales Russell, Chu Shijian, Maxwell Micah J., Mogayzel Peter J., Jr, Zeitlin Pamela L. Modulation of Sp1 and Sp3 in lung epithelial cells regulates ClC-2 chloride channel expression. Am J Respir Cell Mol Biol. 2003 Apr 24;29(4):499–505. doi: 10.1165/rcmb.2003-0030OC. [DOI] [PubMed] [Google Scholar]
  16. Howard Marybeth, Fischer Horst, Roux Jeremie, Santos Bento C., Gullans Steven R., Yancey Paul H., Welch William J. Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J Biol Chem. 2003 Jul 1;278(37):35159–35167. doi: 10.1074/jbc.M301924200. [DOI] [PubMed] [Google Scholar]
  17. Inoue K., Akaike T., Miyamoto Y., Okamoto T., Sawa T., Otagiri M., Suzuki S., Yoshimura T., Maeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem. 1999 Sep 17;274(38):27069–27075. doi: 10.1074/jbc.274.38.27069. [DOI] [PubMed] [Google Scholar]
  18. Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226. doi: 10.1038/380221a0. [DOI] [PubMed] [Google Scholar]
  19. Jilling T., Haddad I. Y., Cheng S. H., Matalon S. Nitric oxide inhibits heterologous CFTR expression in polarized epithelial cells. Am J Physiol. 1999 Jul;277(1 Pt 1):L89–L96. doi: 10.1152/ajplung.1999.277.1.L89. [DOI] [PubMed] [Google Scholar]
  20. Kelley T. J., Drumm M. L. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest. 1998 Sep 15;102(6):1200–1207. doi: 10.1172/JCI2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim Y. M., de Vera M. E., Watkins S. C., Billiar T. R. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem. 1997 Jan 10;272(2):1402–1411. doi: 10.1074/jbc.272.2.1402. [DOI] [PubMed] [Google Scholar]
  22. Kluge I., Gutteck-Amsler U., Zollinger M., Do K. Q. S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J Neurochem. 1997 Dec;69(6):2599–2607. doi: 10.1046/j.1471-4159.1997.69062599.x. [DOI] [PubMed] [Google Scholar]
  23. Koh J., Sferra T. J., Collins F. S. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem. 1993 Jul 25;268(21):15912–15921. [PubMed] [Google Scholar]
  24. Kwon H. S., Kim M. S., Edenberg H. J., Hur M. W. Sp3 and Sp4 can repress transcription by competing with Sp1 for the core cis-elements on the human ADH5/FDH minimal promoter. J Biol Chem. 1999 Jan 1;274(1):20–28. doi: 10.1074/jbc.274.1.20. [DOI] [PubMed] [Google Scholar]
  25. Li S., Moy L., Pittman N., Shue G., Aufiero B., Neufeld E. J., LeLeiko N. S., Walsh M. J. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J Biol Chem. 1999 Mar 19;274(12):7803–7815. doi: 10.1074/jbc.274.12.7803. [DOI] [PubMed] [Google Scholar]
  26. Lipton A. J., Johnson M. A., Macdonald T., Lieberman M. W., Gozal D., Gaston B. S-nitrosothiols signal the ventilatory response to hypoxia. Nature. 2001 Sep 13;413(6852):171–174. doi: 10.1038/35093117. [DOI] [PubMed] [Google Scholar]
  27. Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J. S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001 Mar 22;410(6827):490–494. doi: 10.1038/35068596. [DOI] [PubMed] [Google Scholar]
  28. Mannick J. B., Schonhoff C., Papeta N., Ghafourifar P., Szibor M., Fang K., Gaston B. S-Nitrosylation of mitochondrial caspases. J Cell Biol. 2001 Sep 10;154(6):1111–1116. doi: 10.1083/jcb.200104008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marshall H. E., Stamler J. S. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry. 2001 Feb 13;40(6):1688–1693. doi: 10.1021/bi002239y. [DOI] [PubMed] [Google Scholar]
  30. Palmer L. A., Gaston B., Johns R. A. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol. 2000 Dec;58(6):1197–1203. doi: 10.1124/mol.58.6.1197. [DOI] [PubMed] [Google Scholar]
  31. Rafty L. A., Khachigian L. M. Zinc finger transcription factors mediate high constitutive platelet-derived growth factor-B expression in smooth muscle cells derived from aortae of newborn rats. J Biol Chem. 1998 Mar 6;273(10):5758–5764. doi: 10.1074/jbc.273.10.5758. [DOI] [PubMed] [Google Scholar]
  32. Ratjen F., Gärtig S., Wiesemann H. G., Grasemann H. Effect of inhaled nitric oxide on pulmonary function in cystic fibrosis. Respir Med. 1999 Aug;93(8):579–583. doi: 10.1016/s0954-6111(99)90158-0. [DOI] [PubMed] [Google Scholar]
  33. Riordan J. R. Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am J Hum Genet. 1999 Jun;64(6):1499–1504. doi: 10.1086/302429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ryu Hoon, Lee Junghee, Zaman Khalequz, Kubilis James, Ferrante Robert J., Ross Brian D., Neve Rachael, Ratan Rajiv R. Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J Neurosci. 2003 May 1;23(9):3597–3606. doi: 10.1523/JNEUROSCI.23-09-03597.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schäfer Georgia, Cramer Thorsten, Suske Guntram, Kemmner Wolfgang, Wiedenmann Bertram, Höcker Michael. Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1- and Sp3-dependent activation of two proximal GC-rich promoter elements. J Biol Chem. 2002 Dec 30;278(10):8190–8198. doi: 10.1074/jbc.M211999200. [DOI] [PubMed] [Google Scholar]
  36. Snyder Ashley H., McPherson Marianne E., Hunt John F., Johnson Michael, Stamler Jonathan S., Gaston Benjamin. Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am J Respir Crit Care Med. 2002 Apr 1;165(7):922–926. doi: 10.1164/ajrccm.165.7.2105032. [DOI] [PubMed] [Google Scholar]
  37. Stamler J. S., Lamas S., Fang F. C. Nitrosylation. the prototypic redox-based signaling mechanism. Cell. 2001 Sep 21;106(6):675–683. doi: 10.1016/s0092-8674(01)00495-0. [DOI] [PubMed] [Google Scholar]
  38. Suske G. The Sp-family of transcription factors. Gene. 1999 Oct 1;238(2):291–300. doi: 10.1016/s0378-1119(99)00357-1. [DOI] [PubMed] [Google Scholar]
  39. Ward C. L., Kopito R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem. 1994 Oct 14;269(41):25710–25718. [PubMed] [Google Scholar]
  40. Winterbourn C. C. Oxidative reactions of hemoglobin. Methods Enzymol. 1990;186:265–272. doi: 10.1016/0076-6879(90)86118-f. [DOI] [PubMed] [Google Scholar]
  41. Yoshimura K., Nakamura H., Trapnell B. C., Chu C. S., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res. 1991 Oct 11;19(19):5417–5423. doi: 10.1093/nar/19.19.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zaman K., McPherson M., Vaughan J., Hunt J., Mendes F., Gaston B., Palmer L. A. S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochem Biophys Res Commun. 2001 Jun 1;284(1):65–70. doi: 10.1006/bbrc.2001.4935. [DOI] [PubMed] [Google Scholar]
  43. Zeitlin Pamela L., Diener-West Marie, Rubenstein Ronald C., Boyle Michael P., Lee Carlton K. K., Brass-Ernst Lois. Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther. 2002 Jul;6(1):119–126. doi: 10.1006/mthe.2002.0639. [DOI] [PubMed] [Google Scholar]
  44. Zhang Hui, Peters Kathryn W., Sun Fei, Marino Christopher R., Lang Jochen, Burgoyne Robert D., Frizzell Raymond A. Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 2002 May 30;277(32):28948–28958. doi: 10.1074/jbc.M111706200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES