Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):219–230. doi: 10.1042/BJ20031348

Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.

Galina Radeva 1, Frances J Sharom 1
PMCID: PMC1224147  PMID: 14769131

Abstract

Lipid rafts are plasma-membrane microdomains that are enriched in certain lipids (sphingolipids, glycosphingolipids and cholesterol), as well as in lipid-modified proteins. Rafts appear to exist in the liquid-ordered phase, which contributes to their partitioning from the surrounding liquid-disordered glycerophospholipid environment. DRM (detergent-resistant membrane) fractions isolated from cells are believed to represent coalesced lipid rafts. We have employed extraction using two different non-ionic detergents, Brij-96 and Triton X-100, to isolate detergent-resistant lipid rafts from rat basophilic leukaemia cell line RBL-2H3, and compared their properties with each other and with plasma-membrane vesicles. DRM fractions were isolated as sealed unilamellar vesicles of similar size (135-170 nm diameter), using either sucrose-density-gradient sedimentation or gel-filtration chromatography. Lipid rafts isolated using Brij-96 and Triton X-100 differed in density, protein content and the distribution between high- and low-density fractions of the known raft constituents, Thy-1, and the non-receptor protein tyrosine kinases, Yes and Lyn. Lyn was found in the raft microdomains in predominantly phosphorylated form. The level of enrichment of the protein constituents of the isolated lipid rafts seemed to depend on the ratio of cell lipid/protein to detergent. As indicated by reactivity with anti-Thy-1 antibodies, lipid rafts prepared using Brij-96 appeared to consist of vesicles with primarily right-side-out orientation. Both Brij-96 and Triton X-100 appear to isolate detergent-insoluble raft microdomains from the rat basophilic leukaemia cell line RBL-2H3, but the observed differences suggest that either the detergents themselves play a role in determining the physicochemical characteristics of the resulting DRM fractions, or different subsets of rafts are isolated by the two detergents.

Full Text

The Full Text of this article is available as a PDF (675.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagatolli Luis A. Direct observation of lipid domains in free standing bilayers: from simple to complex lipid mixtures. Chem Phys Lipids. 2003 Jan;122(1-2):137–145. doi: 10.1016/s0009-3084(02)00184-6. [DOI] [PubMed] [Google Scholar]
  2. Bavari Sina, Bosio Catharine M., Wiegand Elizabeth, Ruthel Gordon, Will Amy B., Geisbert Thomas W., Hevey Michael, Schmaljohn Connie, Schmaljohn Alan, Aman M. Javad. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med. 2002 Mar 4;195(5):593–602. doi: 10.1084/jem.20011500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blank Norbert, Gabler Christoph, Schiller Martin, Kriegel Martin, Kalden Joachim R., Lorenz Hanns-Martin. A fast, simple and sensitive method for the detection and quantification of detergent-resistant membranes. J Immunol Methods. 2002 Dec 20;271(1-2):25–35. doi: 10.1016/s0022-1759(02)00335-6. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  6. Dráber Petr, Dráberová Lubica. Lipid rafts in mast cell signaling. Mol Immunol. 2002 Sep;38(16-18):1247–1252. doi: 10.1016/s0161-5890(02)00071-8. [DOI] [PubMed] [Google Scholar]
  7. Dráberová L., Amoui M., Dráber P. Thy-1-mediated activation of rat mast cells: the role of Thy-1 membrane microdomains. Immunology. 1996 Jan;87(1):141–148. [PMC free article] [PubMed] [Google Scholar]
  8. Dráberová L., Dráber P. Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3611–3615. doi: 10.1073/pnas.90.8.3611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eckert Gunter P., Igbavboa Urule, Müller Walter E., Wood W. Gibson. Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains. Brain Res. 2003 Feb 7;962(1-2):144–150. doi: 10.1016/s0006-8993(02)03986-0. [DOI] [PubMed] [Google Scholar]
  10. Edidin M. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 2001 Dec;11(12):492–496. doi: 10.1016/s0962-8924(01)02139-0. [DOI] [PubMed] [Google Scholar]
  11. Edidin Michael. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003 Jan 16;32:257–283. doi: 10.1146/annurev.biophys.32.110601.142439. [DOI] [PubMed] [Google Scholar]
  12. Foster Leonard J., De Hoog Carmen L., Mann Matthias. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci U S A. 2003 Apr 30;100(10):5813–5818. doi: 10.1073/pnas.0631608100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giurisato Emanuele, McIntosh Deirdre P., Tassi Maristella, Gamberucci Alessandra, Benedetti Angelo. T cell receptor can be recruited to a subset of plasma membrane rafts, independently of cell signaling and attendantly to raft clustering. J Biol Chem. 2002 Dec 22;278(9):6771–6778. doi: 10.1074/jbc.M210758200. [DOI] [PubMed] [Google Scholar]
  14. Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys J. 2002 Nov;83(5):2693–2701. doi: 10.1016/S0006-3495(02)75278-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holm Kirsi, Weclewicz Katarzyna, Hewson Roger, Suomalainen Maarit. Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55(gag) associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J Virol. 2003 Apr;77(8):4805–4817. doi: 10.1128/JVI.77.8.4805-4817.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holowka D., Baird B. Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes. Biochemistry. 1983 Jul 5;22(14):3466–3474. doi: 10.1021/bi00283a025. [DOI] [PubMed] [Google Scholar]
  17. Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol. 2001 Aug;13(4):470–477. doi: 10.1016/s0955-0674(00)00238-6. [DOI] [PubMed] [Google Scholar]
  18. Iwabuchi K., Zhang Y., Handa K., Withers D. A., Sinaÿ P., Hakomori S. Reconstitution of membranes simulating "glycosignaling domain" and their susceptibility to lyso-GM3. J Biol Chem. 2000 May 19;275(20):15174–15181. doi: 10.1074/jbc.275.20.15174. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Luria Ayala, Vegelyte-Avery Vaida, Stith Brad, Tsvetkova Nelly M., Wolkers Willem F., Crowe John H., Tablin Fern, Nuccitelli Richard. Detergent-free domain isolated from Xenopus egg plasma membrane with properties similar to those of detergent-resistant membranes. Biochemistry. 2002 Nov 5;41(44):13189–13197. doi: 10.1021/bi026107b. [DOI] [PubMed] [Google Scholar]
  21. Madore N., Smith K. L., Graham C. H., Jen A., Brady K., Hall S., Morris R. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 1999 Dec 15;18(24):6917–6926. doi: 10.1093/emboj/18.24.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maxfield Frederick R. Plasma membrane microdomains. Curr Opin Cell Biol. 2002 Aug;14(4):483–487. doi: 10.1016/s0955-0674(02)00351-4. [DOI] [PubMed] [Google Scholar]
  23. Mirgorodskaya E., Hassan H., Wandall H. H., Clausen H., Roepstorff P. Partial vapor-phase hydrolysis of peptide bonds: A method for mass spectrometric determination of O-glycosylated sites in glycopeptides. Anal Biochem. 1999 Apr 10;269(1):54–65. doi: 10.1006/abio.1998.3089. [DOI] [PubMed] [Google Scholar]
  24. Nayak Debi P., Barman Subrata. Role of lipid rafts in virus assembly and budding. Adv Virus Res. 2002;58:1–28. doi: 10.1016/s0065-3527(02)58001-5. [DOI] [PubMed] [Google Scholar]
  25. Parton R. G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem. 1994 Feb;42(2):155–166. doi: 10.1177/42.2.8288861. [DOI] [PubMed] [Google Scholar]
  26. Pike Linda J. Lipid rafts: bringing order to chaos. J Lipid Res. 2003 Feb 1;44(4):655–667. doi: 10.1194/jlr.R200021-JLR200. [DOI] [PubMed] [Google Scholar]
  27. Pralle A., Keller P., Florin E. L., Simons K., Hörber J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000 Mar 6;148(5):997–1008. doi: 10.1083/jcb.148.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Prinetti A., Iwabuchi K., Hakomori S. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem. 1999 Jul 23;274(30):20916–20924. doi: 10.1074/jbc.274.30.20916. [DOI] [PubMed] [Google Scholar]
  29. Reid-Taylor K. L., Chu J. W., Sharom F. J. Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide. Biochem Cell Biol. 1999;77(3):189–200. [PubMed] [Google Scholar]
  30. Roepstorff Kirstine, Thomsen Peter, Sandvig Kirsten, van Deurs Bo. Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J Biol Chem. 2002 Mar 8;277(21):18954–18960. doi: 10.1074/jbc.M201422200. [DOI] [PubMed] [Google Scholar]
  31. Rosenberger C. M., Brumell J. H., Finlay B. B. Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol. 2000 Nov 16;10(22):R823–R825. doi: 10.1016/s0960-9822(00)00788-0. [DOI] [PubMed] [Google Scholar]
  32. Röper K., Corbeil D., Huttner W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol. 2000 Sep;2(9):582–592. doi: 10.1038/35023524. [DOI] [PubMed] [Google Scholar]
  33. Schroeder R. J., Ahmed S. N., Zhu Y., London E., Brown D. A. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem. 1998 Jan 9;273(2):1150–1157. doi: 10.1074/jbc.273.2.1150. [DOI] [PubMed] [Google Scholar]
  34. Schroeder R., London E., Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130–12134. doi: 10.1073/pnas.91.25.12130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schuck Sebastian, Honsho Masanori, Ekroos Kim, Shevchenko Andrej, Simons Kai. Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A. 2003 Apr 29;100(10):5795–5800. doi: 10.1073/pnas.0631579100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sheets E. D., Lee G. M., Simson R., Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 1997 Oct 14;36(41):12449–12458. doi: 10.1021/bi9710939. [DOI] [PubMed] [Google Scholar]
  37. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  38. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  39. Simons Kai, Ehehalt Robert. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002 Sep;110(5):597–603. doi: 10.1172/JCI16390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  41. Sotirellis N., Johnson T. M., Hibbs M. L., Stanley I. J., Stanley E., Dunn A. R., Cheng H. C. Autophosphorylation induces autoactivation and a decrease in the Src homology 2 domain accessibility of the Lyn protein kinase. J Biol Chem. 1995 Dec 15;270(50):29773–29780. doi: 10.1074/jbc.270.50.29773. [DOI] [PubMed] [Google Scholar]
  42. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  43. Surviladze Z., Dráberová L., Kubínová L., Dráber P. Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells. Eur J Immunol. 1998 Jun;28(6):1847–1858. doi: 10.1002/(SICI)1521-4141(199806)28:06<1847::AID-IMMU1847>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  44. Taylor Christopher M., Coetzee Timothy, Pfeiffer Steven E. Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem. 2002 Jun;81(5):993–1004. doi: 10.1046/j.1471-4159.2002.00884.x. [DOI] [PubMed] [Google Scholar]
  45. Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
  46. Wang J., Gunning W., Kelley K. M. M., Ratnam M. Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane. J Membr Biol. 2002 Sep 1;189(1):35–43. doi: 10.1007/s00232-002-1002-z. [DOI] [PubMed] [Google Scholar]
  47. Young Ryan M., Holowka David, Baird Barbara. A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem. 2003 Apr 1;278(23):20746–20752. doi: 10.1074/jbc.M211402200. [DOI] [PubMed] [Google Scholar]
  48. ZLATKIS A., ZAK B., BOYLE A. J. A new method for the direct determination of serum cholesterol. J Lab Clin Med. 1953 Mar;41(3):486–492. [PubMed] [Google Scholar]
  49. Zajchowski Laura D., Robbins Stephen M. Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem. 2002 Feb;269(3):737–752. doi: 10.1046/j.0014-2956.2001.02715.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES