Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):83–93. doi: 10.1042/BJ20040030

Transcriptional regulation of the human TRIF (TIR domain-containing adaptor protein inducing interferon beta) gene.

Matthew P Hardy 1, Anne F McGGettrick 1, Luke A J O'Neill 1
PMCID: PMC1224148  PMID: 14960149

Abstract

TRIF [TIR (Toll/interleukin-1 receptor) domain-containing adaptor protein inducing interferon beta; also known as TICAM-1 (TIR-containing adaptor molecule-1)] is a key adaptor for TLR3 (Toll-like receptor 3)- and TLR4-mediated signalling. We have performed a detailed annotation of the human TRIF gene and fine analysis of the basal and inducible promoter elements lying 5' to the site of initiation of transcription. Human TRIF maps to chromosome 19p13.3 and is flanked upstream by TIP47, which encodes the mannose 6-phosphate receptor binding protein, and downstream by a gene encoding FEM1a, a human homologue of the Caenorhabditis elegans Feminisation-1 gene. Using promoter-reporter deletion constructs, we identified a distal region with the ability to negatively regulate basal transcription and a proximal region containing an Sp1 (stimulating protein 1) site that confers approx. 75% of basal transcriptional activity. TRIF expression can be induced by multiple stimuli, such as the ligands for TLR2, TLR3 and TLR4, and by the pro-inflammatory cytokines tumour necrosis factor alpha and interleukin-1alpha. All of these stimuli act via an NF-kappaB (nuclear factor-kappaB) motif at position -127. In spite of the presence of a STAT1 (signal transduction and activators of transcription 1) motif at position -330, the addition of type I or type II interferon had no effect on TRIF activity. The human TRIF gene would therefore appear to be regulated primarily by NF-kappaB.

Full Text

The Full Text of this article is available as a PDF (642.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S. Toll-like receptors and innate immunity. Adv Immunol. 2001;78:1–56. doi: 10.1016/s0065-2776(01)78001-7. [DOI] [PubMed] [Google Scholar]
  2. Bi S., Gavrilova O., Gong D. W., Mason M. M., Reitman M. Identification of a placental enhancer for the human leptin gene. J Biol Chem. 1997 Nov 28;272(48):30583–30588. doi: 10.1074/jbc.272.48.30583. [DOI] [PubMed] [Google Scholar]
  3. Bin Liang-Hua, Xu Liang-Guo, Shu Hong-Bing. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem. 2003 Apr 28;278(27):24526–24532. doi: 10.1074/jbc.M303451200. [DOI] [PubMed] [Google Scholar]
  4. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  5. Brown K., Gerstberger S., Carlson L., Franzoso G., Siebenlist U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science. 1995 Mar 10;267(5203):1485–1488. doi: 10.1126/science.7878466. [DOI] [PubMed] [Google Scholar]
  6. Culotti J. G. Axon guidance mechanisms in Caenorhabditis elegans. Curr Opin Genet Dev. 1994 Aug;4(4):587–595. doi: 10.1016/0959-437x(94)90077-g. [DOI] [PubMed] [Google Scholar]
  7. Díaz E., Pfeffer S. R. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell. 1998 May 1;93(3):433–443. doi: 10.1016/s0092-8674(00)81171-x. [DOI] [PubMed] [Google Scholar]
  8. Fitzgerald K. A., Palsson-McDermott E. M., Bowie A. G., Jefferies C. A., Mansell A. S., Brady G., Brint E., Dunne A., Gray P., Harte M. T. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature. 2001 Sep 6;413(6851):78–83. doi: 10.1038/35092578. [DOI] [PubMed] [Google Scholar]
  9. Fitzgerald Katherine A., Rowe Daniel C., Barnes Betsy J., Caffrey Daniel R., Visintin Alberto, Latz Eicke, Monks Brian, Pitha Paula M., Golenbock Douglas T. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003 Sep 29;198(7):1043–1055. doi: 10.1084/jem.20031023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grilli M., Chiu J. J., Lenardo M. J. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62. doi: 10.1016/s0074-7696(08)61873-2. [DOI] [PubMed] [Google Scholar]
  11. Hanke J. H., Hambor J. E., Kavathas P. Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. J Mol Biol. 1995 Feb 10;246(1):63–73. doi: 10.1006/jmbi.1994.0066. [DOI] [PubMed] [Google Scholar]
  12. Hardy M. P., Owczarek C. M., Trajanovska S., Liu X., Kola I., Hertzog P. J. The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties. Blood. 2001 Jan 15;97(2):473–482. doi: 10.1182/blood.v97.2.473. [DOI] [PubMed] [Google Scholar]
  13. Hardy Matthew P., Hertzog Paul J., Owczarek Catherine M. Multiple regions within the promoter of the murine Ifnar-2 gene confer basal and inducible expression. Biochem J. 2002 Jul 15;365(Pt 2):355–367. doi: 10.1042/BJ20020105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harroch S., Gothelf Y., Revel M., Chebath J. 5' upstream sequences of MyD88, an IL-6 primary response gene in M1 cells: detection of functional IRF-1 and Stat factors binding sites. Nucleic Acids Res. 1995 Sep 11;23(17):3539–3546. doi: 10.1093/nar/23.17.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heinemeyer T., Wingender E., Reuter I., Hermjakob H., Kel A. E., Kel O. V., Ignatieva E. V., Ananko E. A., Podkolodnaya O. A., Kolpakov F. A. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998 Jan 1;26(1):362–367. doi: 10.1093/nar/26.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoebe K., Du X., Georgel P., Janssen E., Tabeta K., Kim S. O., Goode J., Lin P., Mann N., Mudd S. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003 Jul 20;424(6950):743–748. doi: 10.1038/nature01889. [DOI] [PubMed] [Google Scholar]
  17. Hoebe Kasper, Du Xin, Goode Jason, Mann Navjiwan, Beutler Bruce. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J Endotoxin Res. 2003;9(4):250–255. doi: 10.1179/096805103225001459. [DOI] [PubMed] [Google Scholar]
  18. Horvath C. M., Wen Z., Darnell J. E., Jr A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev. 1995 Apr 15;9(8):984–994. doi: 10.1101/gad.9.8.984. [DOI] [PubMed] [Google Scholar]
  19. Imoto M., Tachibana I., Urrutia R. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J Cell Sci. 1998 May;111(Pt 10):1341–1349. doi: 10.1242/jcs.111.10.1341. [DOI] [PubMed] [Google Scholar]
  20. Komatsuzaki Katsumi, Dalvin Sussie, Kinane T. Bernard. Modulation of G(ialpha(2)) signaling by the axonal guidance molecule UNC5H2. Biochem Biophys Res Commun. 2002 Oct 4;297(4):898–905. doi: 10.1016/s0006-291x(02)02277-5. [DOI] [PubMed] [Google Scholar]
  21. Krakow D., Sebald E., King L. M., Cohn D. H. Identification of human FEM1A, the ortholog of a C. elegans sex-differentiation gene. Gene. 2001 Nov 28;279(2):213–219. doi: 10.1016/s0378-1119(01)00756-9. [DOI] [PubMed] [Google Scholar]
  22. Kunsch C., Ruben S. M., Rosen C. A. Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol. 1992 Oct;12(10):4412–4421. doi: 10.1128/mcb.12.10.4412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Labrousse A. M., Zappaterra M. D., Rube D. A., van der Bliek A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell. 1999 Nov;4(5):815–826. doi: 10.1016/s1097-2765(00)80391-3. [DOI] [PubMed] [Google Scholar]
  24. Loots G. G., Locksley R. M., Blankespoor C. M., Wang Z. E., Miller W., Rubin E. M., Frazer K. A. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science. 2000 Apr 7;288(5463):136–140. doi: 10.1126/science.288.5463.136. [DOI] [PubMed] [Google Scholar]
  25. Lord K. A., Hoffman-Liebermann B., Liebermann D. A. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene. 1990 Jul;5(7):1095–1097. [PubMed] [Google Scholar]
  26. Mink M., Fogelgren B., Olszewski K., Maroy P., Csiszar K. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics. 2001 Jun 1;74(2):234–244. doi: 10.1006/geno.2001.6548. [DOI] [PubMed] [Google Scholar]
  27. Nardelli J., Gibson T. J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 1991 Jan 10;349(6305):175–178. doi: 10.1038/349175a0. [DOI] [PubMed] [Google Scholar]
  28. O'Neill L. A. J. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol Immunol. 2002;270:47–61. [PubMed] [Google Scholar]
  29. O'Neill Luke A. J., Dunne Aisling, Edjeback Michael, Gray Pearl, Jefferies Caroline, Wietek Claudia. Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J Endotoxin Res. 2003;9(1):55–59. doi: 10.1179/096805103125001351. [DOI] [PubMed] [Google Scholar]
  30. O'Neill Luke A. J., Fitzgerald Katherine A., Bowie Andrew G. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 2003 Jun;24(6):286–290. doi: 10.1016/s1471-4906(03)00115-7. [DOI] [PubMed] [Google Scholar]
  31. Oshiumi Hiroyuki, Matsumoto Misako, Funami Kenji, Akazawa Takashi, Seya Tsukasa. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003 Jan 21;4(2):161–167. doi: 10.1038/ni886. [DOI] [PubMed] [Google Scholar]
  32. Oshiumi Hiroyuki, Sasai Miwa, Shida Kyoko, Fujita Takashi, Matsumoto Misako, Seya Tsukasa. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem. 2003 Sep 30;278(50):49751–49762. doi: 10.1074/jbc.M305820200. [DOI] [PubMed] [Google Scholar]
  33. Prestridge D. S. SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci. 1991 Apr;7(2):203–206. doi: 10.1093/bioinformatics/7.2.203. [DOI] [PubMed] [Google Scholar]
  34. Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11;23(23):4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sato Shintaro, Sugiyama Masanaka, Yamamoto Masahiro, Watanabe Yasuyuki, Kawai Taro, Takeda Kiyoshi, Akira Shizuo. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003 Oct 15;171(8):4304–4310. doi: 10.4049/jimmunol.171.8.4304. [DOI] [PubMed] [Google Scholar]
  36. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shin H. W., Shinotsuka C., Torii S., Murakami K., Nakayama K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J Biochem. 1997 Sep;122(3):525–530. doi: 10.1093/oxfordjournals.jbchem.a021784. [DOI] [PubMed] [Google Scholar]
  38. Smith R. F., Wiese B. A., Wojzynski M. K., Davison D. B., Worley K. C. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 1996 May;6(5):454–462. doi: 10.1101/gr.6.5.454. [DOI] [PubMed] [Google Scholar]
  39. Spence A. M., Coulson A., Hodgkin J. The product of fem-1, a nematode sex-determining gene, contains a motif found in cell cycle control proteins and receptors for cell-cell interactions. Cell. 1990 Mar 23;60(6):981–990. doi: 10.1016/0092-8674(90)90346-g. [DOI] [PubMed] [Google Scholar]
  40. Thiagalingam A., De Bustros A., Borges M., Jasti R., Compton D., Diamond L., Mabry M., Ball D. W., Baylin S. B., Nelkin B. D. RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas. Mol Cell Biol. 1996 Oct;16(10):5335–5345. doi: 10.1128/mcb.16.10.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thiebault Karine, Mazelin Laetitia, Pays Laurent, Llambi Fabien, Joly Marie-Odile, Scoazec Jean-Yves, Saurin Jean-Christophe, Romeo Giovanni, Mehlen Patrick. The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci U S A. 2003 Mar 24;100(7):4173–4178. doi: 10.1073/pnas.0738063100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Traenckner E. B., Pahl H. L., Henkel T., Schmidt K. N., Wilk S., Baeuerle P. A. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J. 1995 Jun 15;14(12):2876–2883. doi: 10.1002/j.1460-2075.1995.tb07287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang T., Lafuse W. P., Zwilling B. S. NFkappaB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. J Immunol. 2001 Dec 15;167(12):6924–6932. doi: 10.4049/jimmunol.167.12.6924. [DOI] [PubMed] [Google Scholar]
  44. Williams T., Tjian R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science. 1991 Mar 1;251(4997):1067–1071. doi: 10.1126/science.1998122. [DOI] [PubMed] [Google Scholar]
  45. Yamamoto Masahiro, Sato Shintaro, Hemmi Hiroaki, Hoshino Katsuaki, Kaisho Tsuneyasu, Sanjo Hideki, Takeuchi Osamu, Sugiyama Masanaka, Okabe Masaru, Takeda Kiyoshi. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003 Jul 10;301(5633):640–643. doi: 10.1126/science.1087262. [DOI] [PubMed] [Google Scholar]
  46. Yamamoto Masahiro, Sato Shintaro, Mori Kiyotoshi, Hoshino Katsuaki, Takeuchi Osamu, Takeda Kiyoshi, Akira Shizuo. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002 Dec 15;169(12):6668–6672. doi: 10.4049/jimmunol.169.12.6668. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES