Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):231–242. doi: 10.1042/BJ20031981

Partial reconstruction of in vitro gluconeogenesis arising from mitochondrial l-lactate uptake/metabolism and oxaloacetate export via novel L-lactate translocators.

Lidia De Bari 1, Anna Atlante 1, Daniela Valenti 1, Salvatore Passarella 1
PMCID: PMC1224149  PMID: 14960150

Abstract

In the light of the occurrence of L-lactate dehydrogenase inside the mitochondrial matrix, we looked at whether isolated rat liver mitochondria can take up and metabolize L-lactate, and provide oxaloacetate outside mitochondria, thus contributing to a partial reconstruction of gluconeogenesis in vitro. We found that: (1) L-lactate (10 mM), added to mitochondria in the presence of a cocktail of glycolysis/gluconeogenesis enzymes and cofactors, can lead to synthesis of glyceraldehyde-3-phosphate at a rate of about 7 nmol/min per mg mitochondrial protein. (2) Three novel translocators exist to mediate L-lactate traffic across the inner mitochondrial membrane. An L-lactate/H+ symporter was identified by measuring fluorimetrically the rate of endogenous pyridine nucleotide reduction. Consistently, L-lactate oxidation was found to occur with P/O ratio=3 (where P/O ratio is the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation) and with generation of membrane potential. Proton uptake, which occurred as a result of addition of L-lactate to RLM together with electron flow inhibitors, and mitochondrial swelling in ammonium L-lactate solutions were also monitored. L-Lactate/oxaloacetate and L-lactate/pyruvate anti-porters were identified by monitoring photometrically the appearance of L-lactate counter-anions outside mitochondria. These L-lactate translocators, which are distinct from the monocarboxylate carrier, were found to differ from each other in V(max) values and in inhibition and pH profiles, and proved to regulate mitochondrial L-lactate metabolism in vitro. The role of lactate/mitochondria interactions in gluconeogenesis is discussed.

Full Text

The Full Text of this article is available as a PDF (770.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arinze I. J., Garber A. J., Hanson R. W. The regulation of gluconeogenesis in mammalian liver. The role of mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1973 Apr 10;248(7):2266–2274. [PubMed] [Google Scholar]
  2. Atlante A., Gagliardi S., Passarella S. Fumarate permeation in normal and acidotic rat kidney mitochondria: fumarate/malate and fumarate/aspartate translocators. Biochem Biophys Res Commun. 1998 Feb 24;243(3):711–718. doi: 10.1006/bbrc.1998.8147. [DOI] [PubMed] [Google Scholar]
  3. Atlante A., Passarella S., Giannattasio S., Quagliariello E. Fumarate permeation in rat liver mitochondria: fumarate/malate and fumarate/phosphate translocators. Biochem Biophys Res Commun. 1985 Oct 15;132(1):8–18. doi: 10.1016/0006-291x(85)90981-7. [DOI] [PubMed] [Google Scholar]
  4. Atlante A., Passarella S., Minervini G. M., Quagliariello E. Glutamine transport in normal and acidotic rat kidney mitochondria. Arch Biochem Biophys. 1994 Dec;315(2):369–381. doi: 10.1006/abbi.1994.1513. [DOI] [PubMed] [Google Scholar]
  5. Atlante A., Passarella S., Pierro P., Di Martino C., Quagliariello E. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement. Eur J Biochem. 1996 Oct 1;241(1):171–177. doi: 10.1111/j.1432-1033.1996.0171t.x. [DOI] [PubMed] [Google Scholar]
  6. Atlante A., Passarella S., Quagliariello E. Pyruvate/malate antiporter in rat liver mitochondria. Biochem Biophys Res Commun. 1992 Jan 31;182(2):931–938. doi: 10.1016/0006-291x(92)91821-7. [DOI] [PubMed] [Google Scholar]
  7. Brandt R. B., Laux J. E., Spainhour S. E., Kline E. S. Lactate dehydrogenase in rat mitochondria. Arch Biochem Biophys. 1987 Dec;259(2):412–422. doi: 10.1016/0003-9861(87)90507-8. [DOI] [PubMed] [Google Scholar]
  8. Brandt R. B., Laux J. E., Spainhour S. E., Kline E. S. Lactate dehydrogenase in rat mitochondria. Arch Biochem Biophys. 1987 Dec;259(2):412–422. doi: 10.1016/0003-9861(87)90507-8. [DOI] [PubMed] [Google Scholar]
  9. Brooks G. A., Dubouchaud H., Brown M., Sicurello J. P., Butz C. E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1129–1134. doi: 10.1073/pnas.96.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chelstowska A., Liu Z., Jia Y., Amberg D., Butow R. A. Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast. 1999 Sep 30;15(13):1377–1391. doi: 10.1002/(SICI)1097-0061(19990930)15:13<1377::AID-YEA473>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  11. Dry I. B., Dimitriadis E., Ward A. D., Wiskich J. T. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria. Biochem J. 1987 Aug 1;245(3):669–675. doi: 10.1042/bj2450669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giannattasio Sergio, Gagliardi Sara, Samaja Michele, Marra Ersilia. Simultaneous determination of purine nucleotides, their metabolites and beta-nicotinamide adenine dinucleotide in cerebellar granule cells by ion-pair high performance liquid chromatography. Brain Res Brain Res Protoc. 2003 Feb;10(3):168–174. doi: 10.1016/s1385-299x(02)00215-5. [DOI] [PubMed] [Google Scholar]
  13. Halestrap A. P., Scott R. D., Thomas A. P. Mitochondrial pyruvate transport and its hormonal regulation. Int J Biochem. 1980;11(2):97–105. doi: 10.1016/0020-711x(80)90241-4. [DOI] [PubMed] [Google Scholar]
  14. Halestrap Andrew P., Meredith David. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2003 May 9;447(5):619–628. doi: 10.1007/s00424-003-1067-2. [DOI] [PubMed] [Google Scholar]
  15. Kline E. S., Brandt R. B., Laux J. E., Spainhour S. E., Higgins E. S., Rogers K. S., Tinsley S. B., Waters M. G. Localization of L-lactate dehydrogenase in mitochondria. Arch Biochem Biophys. 1986 May 1;246(2):673–680. doi: 10.1016/0003-9861(86)90323-1. [DOI] [PubMed] [Google Scholar]
  16. Lluis C. Lactate dehydrogenase associated with the mitochondrial fraction and with a mitochondrial inhibitor--I. Enzyme binding to the mitochondrial fraction. Int J Biochem. 1984;16(9):997–1004. doi: 10.1016/0020-711x(84)90117-4. [DOI] [PubMed] [Google Scholar]
  17. Longshaw I. D., Bowen N. L., Pogson C. I. The pathway of gluconeogenesis in the cortex of guinea-pig kidney. Use of aminooxyacetate as a transaminase inhibitor. Eur J Biochem. 1972 Feb 15;25(2):366–371. doi: 10.1111/j.1432-1033.1972.tb01705.x. [DOI] [PubMed] [Google Scholar]
  18. Meijer A. J., Gimpel J. A., Deleeuw G., Tischler M. E., Tager J. M., Williamson J. R. Interrelationships between gluconeogenesis and ureogenesis in isolated hepatocytes. J Biol Chem. 1978 Apr 10;253(7):2308–2320. [PubMed] [Google Scholar]
  19. Passarella S., Atlante A., Quagliariello E. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process. Eur J Biochem. 1990 Oct 5;193(1):221–227. doi: 10.1111/j.1432-1033.1990.tb19326.x. [DOI] [PubMed] [Google Scholar]
  20. Passarella S., Atlante A., Quagliariello E. Oxaloacetate permeation in rat kidney mitochondria: pyruvate/oxaloacetate and malate/oxaloacetate translocators. Biochem Biophys Res Commun. 1985 May 31;129(1):1–10. doi: 10.1016/0006-291x(85)91394-4. [DOI] [PubMed] [Google Scholar]
  21. Passarella Salvatore, Atlante Anna, Valenti Daniela, de Bari Lidia. The role of mitochondrial transport in energy metabolism. Mitochondrion. 2003 Apr;2(5):319–343. doi: 10.1016/S1567-7249(03)00008-4. [DOI] [PubMed] [Google Scholar]
  22. Popinigis J., Antosiewicz J., Crimi M., Lenaz G., Wakabayashi T. Human skeletal muscle: participation of different metabolic activities in oxidation of L-lactate. Acta Biochim Pol. 1991;38(1):169–175. [PubMed] [Google Scholar]
  23. Rasmussen Hans N., van Hall Gerrit, Rasmussen Ulla F. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle. J Physiol. 2002 Jun 1;541(Pt 2):575–580. doi: 10.1113/jphysiol.2002.019216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rognstad R. The role of mitochondrial pyruvate transport in the control of lactate gluconeogenesis. Int J Biochem. 1983;15(12):1417–1421. doi: 10.1016/0020-711x(83)90073-3. [DOI] [PubMed] [Google Scholar]
  25. Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sahlin Kent, Fernström Maria, Svensson Michael, Tonkonogi Michail. No evidence of an intracellular lactate shuttle in rat skeletal muscle. J Physiol. 2002 Jun 1;541(Pt 2):569–574. doi: 10.1113/jphysiol.2002.016683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sistare F. D., Haynes R. C., Jr The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action. J Biol Chem. 1985 Oct 15;260(23):12748–12753. [PubMed] [Google Scholar]
  28. Smith S. B., Briggs S., Triebwasser K. C., Freedland R. A. Re-evaluation of amino-oxyacetate as an inhibitor. Biochem J. 1977 Feb 15;162(2):453–455. doi: 10.1042/bj1620453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Szczesna-Kaczmarek A. Regulating effect of mitochondrial lactate dehydrogenase on oxidation of cytoplasmic NADH via an "external" pathway in skeletal muscle mitochondria. Int J Biochem. 1992 Apr;24(4):657–661. doi: 10.1016/0020-711x(92)90343-y. [DOI] [PubMed] [Google Scholar]
  30. Söling H. D., Kleineke J., Willms B., Janson G., Kuhn A. Relationship between intracellular distribution of phosphoenolpyruvate carboxykinase, regulation of gluconeogenesis, and energy cost of glucose formation. Eur J Biochem. 1973 Aug 17;37(2):233–243. doi: 10.1111/j.1432-1033.1973.tb02980.x. [DOI] [PubMed] [Google Scholar]
  31. Thomas A. P., Halestrap A. P. The rôle of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes. Biochem J. 1981 Sep 15;198(3):551–560. doi: 10.1042/bj1980551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valenti Daniela, de Bari Lidia, Atlante Anna, Passarella Salvatore. L-Lactate transport into rat heart mitochondria and reconstruction of the L-lactate/pyruvate shuttle. Biochem J. 2002 May 15;364(Pt 1):101–104. doi: 10.1042/bj3640101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Hall G. Lactate as a fuel for mitochondrial respiration. Acta Physiol Scand. 2000 Apr;168(4):643–656. doi: 10.1046/j.1365-201x.2000.00716.x. [DOI] [PubMed] [Google Scholar]
  34. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
  35. de Bari Lidia, Atlante Anna, Guaragnella Nicoletta, Principato Giovanni, Passarella Salvatore. D-Lactate transport and metabolism in rat liver mitochondria. Biochem J. 2002 Jul 15;365(Pt 2):391–403. doi: 10.1042/BJ20020139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES