Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):153–160. doi: 10.1042/BJ20031379

The potential function of steroid sulphatase activity in steroid production and steroidogenic acute regulatory protein expression.

Teruo Sugawara 1, Seiichiro Fujimoto 1
PMCID: PMC1224158  PMID: 14969586

Abstract

The first step in the biosynthesis of steroid hormones is conversion of cholesterol into pregnenolone. StAR (steroidogenic acute regulatory) protein plays a crucial role in the intra-mitochondrial movement of cholesterol. STS (steroid sulphatase), which is present ubiquitously in mammalian tissues, including the placenta, adrenal gland, testis and ovary, desulphates a number of 3beta-hydroxysteroid sulphates, including cholesterol sulphate. The present study was designed to examine the effect of STS on StAR protein synthesis and steroidogenesis in cells. Steroidogenic activities of COS-1 cells that had been co-transfected with a vector for the cholesterol P450scc (cytochrome P450 side-chain-cleavage enzyme) system, named F2, a StAR expression vector (pStAR), and an STS expression vector (pSTS) were assayed. Whole-cell extracts were subjected to SDS/PAGE and then to Western blot analysis. pSTS co-expressed in COS-1 cells with F2 and pStAR increased pregnenolone synthesis 2-fold compared with that of co-expression with F2 and pStAR. Western blot analysis using COS-1 cells that had been co-transfected with pSTS, F2 and pStAR revealed that StAR protein levels increased, whereas STS and P450scc protein levels did not change. The amount of StAR protein translation products increased when pSTS was added to an in vitro transcription-translation reaction mixture. Pulse-chase experiments demonstrated that the 37 kDa StAR pre-protein disappeared significantly ( P <0.01) more slowly in COS-1 cells that had been transfected with pSTS than in COS-1 cells that had not been transfected with pSTS. The increase in StAR protein level is not a result of an increase in StAR gene expression, but is a result of both an increase in translation and a longer half-life of the 37 kDa pre-StAR protein. In conclusion, STS increases StAR protein expression level and stimulates steroid production.

Full Text

The Full Text of this article is available as a PDF (289.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adessi G. L., Nhuan T. Q., Vingler P. In vivo and in vitro metabolism of estrone and estradiol-17 beta and their 3-sulfates in pregnant female guinea pigs: a plausible prehormone role of estrogen-sulfates in the maternal uterus. J Steroid Biochem. 1982 Jan;16(1):107–116. doi: 10.1016/0022-4731(82)90151-0. [DOI] [PubMed] [Google Scholar]
  2. Alpy F., Stoeckel M. E., Dierich A., Escola J. M., Wendling C., Chenard M. P., Vanier M. T., Gruenberg J., Tomasetto C., Rio M. C. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem. 2000 Oct 26;276(6):4261–4269. doi: 10.1074/jbc.M006279200. [DOI] [PubMed] [Google Scholar]
  3. Arakane F., Kallen C. B., Watari H., Foster J. A., Sepuri N. B., Pain D., Stayrook S. E., Lewis M., Gerton G. L., Strauss J. F., 3rd The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis. J Biol Chem. 1998 Jun 26;273(26):16339–16345. doi: 10.1074/jbc.273.26.16339. [DOI] [PubMed] [Google Scholar]
  4. Arakane F., King S. R., Du Y., Kallen C. B., Walsh L. P., Watari H., Stocco D. M., Strauss J. F., 3rd Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997 Dec 19;272(51):32656–32662. doi: 10.1074/jbc.272.51.32656. [DOI] [PubMed] [Google Scholar]
  5. Artemenko I. P., Zhao D., Hales D. B., Hales K. H., Jefcoate C. R. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem. 2001 Sep 28;276(49):46583–46596. doi: 10.1074/jbc.M107815200. [DOI] [PubMed] [Google Scholar]
  6. Bose H. S., Sugawara T., Strauss J. F., 3rd, Miller W. L., International Congenital Lipoid Adrenal Hyperplasia Consortium The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996 Dec 19;335(25):1870–1878. doi: 10.1056/NEJM199612193352503. [DOI] [PubMed] [Google Scholar]
  7. Bose H. S., Whittal R. M., Baldwin M. A., Miller W. L. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7250–7255. doi: 10.1073/pnas.96.13.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bose H. S., Whittal R. M., Huang M. C., Baldwin M. A., Miller W. L. N-218 MLN64, a protein with StAR-like steroidogenic activity, is folded and cleaved similarly to StAR. Biochemistry. 2000 Sep 26;39(38):11722–11731. doi: 10.1021/bi000911l. [DOI] [PubMed] [Google Scholar]
  9. Bose Himangshu S., Lingappa Vishwanath R., Miller Walter L. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature. 2002 May 2;417(6884):87–91. doi: 10.1038/417087a. [DOI] [PubMed] [Google Scholar]
  10. Brown M. S., Goldstein J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331–340. doi: 10.1016/s0092-8674(00)80213-5. [DOI] [PubMed] [Google Scholar]
  11. Chanderbhan R. F., Kharroubi A. T., Noland B. J., Scallen T. J., Vahouny G. V. Sterol carrier protein2: further evidence for its role in adrenal steroidogenesis. Endocr Res. 1986;12(4):351–370. doi: 10.3109/07435808609035445. [DOI] [PubMed] [Google Scholar]
  12. Choe B. K., Lillehoj H. S., Dong M. K., Gleason S., Barron M., Rose N. R. Characterization of antigenic sites of human prostatic acid phosphatase. Ann N Y Acad Sci. 1982;390:16–26. doi: 10.1111/j.1749-6632.1982.tb40301.x. [DOI] [PubMed] [Google Scholar]
  13. Christensen K., Bose H. S., Harris F. M., Miller W. L., Bell J. D. Binding of steroidogenic acute regulatory protein to synthetic membranes suggests an active molten globule. J Biol Chem. 2001 Mar 6;276(20):17044–17051. doi: 10.1074/jbc.M100903200. [DOI] [PubMed] [Google Scholar]
  14. Christenson L. K., Johnson P. F., McAllister J. M., Strauss J. F., 3rd CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene. J Biol Chem. 1999 Sep 10;274(37):26591–26598. doi: 10.1074/jbc.274.37.26591. [DOI] [PubMed] [Google Scholar]
  15. Christenson L. K., McAllister J. M., Martin K. O., Javitt N. B., Osborne T. F., Strauss J. F., 3rd Oxysterol regulation of steroidogenic acute regulatory protein gene expression. Structural specificity and transcriptional and posttranscriptional actions. J Biol Chem. 1998 Nov 13;273(46):30729–30735. doi: 10.1074/jbc.273.46.30729. [DOI] [PubMed] [Google Scholar]
  16. Christenson L. K., Osborne T. F., McAllister J. M., Strauss J. F., 3rd Conditional response of the human steroidogenic acute regulatory protein gene promoter to sterol regulatory element binding protein-1a. Endocrinology. 2001 Jan;142(1):28–36. doi: 10.1210/endo.142.1.7867. [DOI] [PubMed] [Google Scholar]
  17. Clark B. J., Wells J., King S. R., Stocco D. M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994 Nov 11;269(45):28314–28322. [PubMed] [Google Scholar]
  18. Clemens J. W., Kabler H. L., Sarap J. L., Beyer A. R., Li P. K., Selcer K. W. Steroid sulfatase activity in the rat ovary, cultured granulosa cells, and a granulosa cell line. J Steroid Biochem Mol Biol. 2000 Dec 31;75(4-5):245–252. doi: 10.1016/s0960-0760(00)00171-0. [DOI] [PubMed] [Google Scholar]
  19. Dowell P., Peterson V. J., Zabriskie T. M., Leid M. Ligand-induced peroxisome proliferator-activated receptor alpha conformational change. J Biol Chem. 1997 Jan 17;272(3):2013–2020. doi: 10.1074/jbc.272.3.2013. [DOI] [PubMed] [Google Scholar]
  20. Epstein L. F., Orme-Johnson N. R. Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem. 1991 Oct 15;266(29):19739–19745. [PubMed] [Google Scholar]
  21. Harikrishna J. A., Black S. M., Szklarz G. D., Miller W. L. Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol. 1993 Jun;12(5):371–379. doi: 10.1089/dna.1993.12.371. [DOI] [PubMed] [Google Scholar]
  22. Hirotani M., Tsukamoto T., Bourdeaux J., Sadano H., Osumi T. Stabilization of peroxisome proliferator-activated receptor alpha by the ligand. Biochem Biophys Res Commun. 2001 Oct 19;288(1):106–110. doi: 10.1006/bbrc.2001.5739. [DOI] [PubMed] [Google Scholar]
  23. Ishii Tomohiro, Hasegawa Tomonobu, Pai Chin-I, Yvgi-Ohana Natalie, Timberg Rina, Zhao Liping, Majdic Gregor, Chung Bon-chu, Orly Joseph, Parker Keith L. The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroidogenic acute regulatory protein. Mol Endocrinol. 2002 Oct;16(10):2297–2309. doi: 10.1210/me.2001-0320. [DOI] [PubMed] [Google Scholar]
  24. Jacobs N. L., Andemariam B., Underwood K. W., Panchalingam K., Sternberg D., Kielian M., Liscum L. Analysis of a Chinese hamster ovary cell mutant with defective mobilization of cholesterol from the plasma membrane to the endoplasmic reticulum. J Lipid Res. 1997 Oct;38(10):1973–1987. [PubMed] [Google Scholar]
  25. Jefcoate Colin. High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. J Clin Invest. 2002 Oct;110(7):881–890. doi: 10.1172/JCI16771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lambeth J. D., Xu X. X., Glover M. Cholesterol sulfate inhibits adrenal mitochondrial cholesterol side chain cleavage at a site distinct from cytochrome P-450scc. Evidence for an intramitochondrial cholesterol translocator. J Biol Chem. 1987 Jul 5;262(19):9181–9188. [PubMed] [Google Scholar]
  28. Lin D., Sugawara T., Strauss J. F., 3rd, Clark B. J., Stocco D. M., Saenger P., Rogol A., Miller W. L. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995 Mar 24;267(5205):1828–1831. doi: 10.1126/science.7892608. [DOI] [PubMed] [Google Scholar]
  29. Martel C., Melner M. H., Gagné D., Simard J., Labrie F. Widespread tissue distribution of steroid sulfatase, 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD), 17 beta-HSD 5 alpha-reductase and aromatase activities in the rhesus monkey. Mol Cell Endocrinol. 1994 Aug;104(1):103–111. doi: 10.1016/0303-7207(94)90056-6. [DOI] [PubMed] [Google Scholar]
  30. Moog-Lutz C., Tomasetto C., Régnier C. H., Wendling C., Lutz Y., Muller D., Chenard M. P., Basset P., Rio M. C. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer. 1997 Apr 10;71(2):183–191. doi: 10.1002/(sici)1097-0215(19970410)71:2<183::aid-ijc10>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  31. Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev. 1993 Apr;14(2):222–240. doi: 10.1210/edrv-14-2-222. [DOI] [PubMed] [Google Scholar]
  32. Petrescu A. D., Gallegos A. M., Okamura Y., Strauss J. F., 3rd, Schroeder F. Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol domain dynamics. J Biol Chem. 2001 Aug 6;276(40):36970–36982. doi: 10.1074/jbc.M101939200. [DOI] [PubMed] [Google Scholar]
  33. Ponting C. P., Aravind L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci. 1999 Apr;24(4):130–132. doi: 10.1016/s0968-0004(99)01362-6. [DOI] [PubMed] [Google Scholar]
  34. Privalle C. T., Crivello J. F., Jefcoate C. R. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci U S A. 1983 Feb;80(3):702–706. doi: 10.1073/pnas.80.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rao Rekha M., Jo Youngah, Leers-Sucheta Susan, Bose Himangshu S., Miller Walter L., Azhar Salman, Stocco Douglas M. Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol Reprod. 2003 Jan;68(1):114–121. doi: 10.1095/biolreprod.102.007518. [DOI] [PubMed] [Google Scholar]
  36. Reinhart A. J., Williams S. C., Clark B. J., Stocco D. M. SF-1 (steroidogenic factor-1) and C/EBP beta (CCAAT/enhancer binding protein-beta) cooperate to regulate the murine StAR (steroidogenic acute regulatory) promoter. Mol Endocrinol. 1999 May;13(5):729–741. doi: 10.1210/mend.13.5.0279. [DOI] [PubMed] [Google Scholar]
  37. Stein C., Hille A., Seidel J., Rijnbout S., Waheed A., Schmidt B., Geuze H., von Figura K. Cloning and expression of human steroid-sulfatase. Membrane topology, glycosylation, and subcellular distribution in BHK-21 cells. J Biol Chem. 1989 Aug 15;264(23):13865–13872. [PubMed] [Google Scholar]
  38. Stocco D. M., Chen W. Presence of identical mitochondrial proteins in unstimulated constitutive steroid-producing R2C rat Leydig tumor and stimulated nonconstitutive steroid-producing MA-10 mouse Leydig tumor cells. Endocrinology. 1991 Apr;128(4):1918–1926. doi: 10.1210/endo-128-4-1918. [DOI] [PubMed] [Google Scholar]
  39. Stocco D. M., Clark B. J. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996 Jun;17(3):221–244. doi: 10.1210/edrv-17-3-221. [DOI] [PubMed] [Google Scholar]
  40. Strauss J. F., 3rd, Kallen C. B., Christenson L. K., Watari H., Devoto L., Arakane F., Kiriakidou M., Sugawara T. The steroidogenic acute regulatory protein (StAR): a window into the complexities of intracellular cholesterol trafficking. Recent Prog Horm Res. 1999;54:369–395. [PubMed] [Google Scholar]
  41. Sugawara T., Holt J. A., Driscoll D., Strauss J. F., 3rd, Lin D., Miller W. L., Patterson D., Clancy K. P., Hart I. M., Clark B. J. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4778–4782. doi: 10.1073/pnas.92.11.4778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sugawara T., Honke K., Gasa S., Tanaka T., Fujimoto S., Makita A. Serum levels of steroid sulfatase protein in gynecologic carcinomas. Clin Chim Acta. 1994 Apr;226(1):13–20. doi: 10.1016/0009-8981(94)90098-1. [DOI] [PubMed] [Google Scholar]
  43. Sugawara T., Lin D., Holt J. A., Martin K. O., Javitt N. B., Miller W. L., Strauss J. F., 3rd Structure of the human steroidogenic acute regulatory protein (StAR) gene: StAR stimulates mitochondrial cholesterol 27-hydroxylase activity. Biochemistry. 1995 Oct 3;34(39):12506–12512. doi: 10.1021/bi00039a004. [DOI] [PubMed] [Google Scholar]
  44. Sugawara T., Shimizu H., Hoshi N., Fujimoto Y., Nakajima A., Fujimoto S. PCR diagnosis of X-linked ichthyosis: identification of a novel mutation (E560P) of the steroid sulfatase gene. Hum Mutat. 2000 Mar;15(3):296–296. doi: 10.1002/(SICI)1098-1004(200003)15:3<296::AID-HUMU17>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  45. Takemori Hiroshi, Katoh Yoshiko, Horike Nanao, Doi Junko, Okamoto Mitsuhiro. ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. J Biol Chem. 2002 Aug 27;277(44):42334–42343. doi: 10.1074/jbc.M204602200. [DOI] [PubMed] [Google Scholar]
  46. Toaff M. E., Strauss J. F., 3rd, Flickinger G. L., Shattil S. J. Relationship of cholesterol supply to luteal mitochondrial steroid synthesis. J Biol Chem. 1979 May 25;254(10):3977–3982. [PubMed] [Google Scholar]
  47. Tsujishita Y., Hurley J. H. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol. 2000 May;7(5):408–414. doi: 10.1038/75192. [DOI] [PubMed] [Google Scholar]
  48. Tuckey Robert C., Headlam Madeleine J., Bose Himangshu S., Miller Walter L. Transfer of cholesterol between phospholipid vesicles mediated by the steroidogenic acute regulatory protein (StAR). J Biol Chem. 2002 Oct 7;277(49):47123–47128. doi: 10.1074/jbc.M206965200. [DOI] [PubMed] [Google Scholar]
  49. Watari H., Arakane F., Moog-Lutz C., Kallen C. B., Tomasetto C., Gerton G. L., Rio M. C., Baker M. E., Strauss J. F., 3rd MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8462–8467. doi: 10.1073/pnas.94.16.8462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wooton-Kee C. R., Clark B. J. Steroidogenic factor-1 influences protein-deoxyribonucleic acid interactions within the cyclic adenosine 3,5-monophosphate-responsive regions of the murine steroidogenic acute regulatory protein gene. Endocrinology. 2000 Apr;141(4):1345–1355. doi: 10.1210/endo.141.4.7412. [DOI] [PubMed] [Google Scholar]
  51. Xu X. X., Lambeth J. D. Cholesterol sulfate is a naturally occurring inhibitor of steroidogenesis in isolated rat adrenal mitochondria. J Biol Chem. 1989 May 5;264(13):7222–7227. [PubMed] [Google Scholar]
  52. Yamamoto R., Kallen C. B., Babalola G. O., Rennert H., Billheimer J. T., Strauss J. F., 3rd Cloning and expression of a cDNA encoding human sterol carrier protein 2. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):463–467. doi: 10.1073/pnas.88.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yokoyama C., Wang X., Briggs M. R., Admon A., Wu J., Hua X., Goldstein J. L., Brown M. S. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187–197. [PubMed] [Google Scholar]
  54. Zhang Mei, Liu Pei, Dwyer Nancy K., Christenson Lane K., Fujimoto Toshio, Martinez Federico, Comly Marcy, Hanover John A., Blanchette-Mackie E. Joan, Strauss Jerome F., 3rd MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J Biol Chem. 2002 Jun 17;277(36):33300–33310. doi: 10.1074/jbc.M200003200. [DOI] [PubMed] [Google Scholar]
  55. Zolotarjova N. I., Hollis G. F., Wynn R. Unusually stable and long-lived ligand-induced conformations of integrins. J Biol Chem. 2001 Mar 8;276(20):17063–17068. doi: 10.1074/jbc.M009627200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES