Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 May 15;380(Pt 1):181–191. doi: 10.1042/BJ20031577

Characterization of an ankyrin repeat-containing Shank2 isoform (Shank2E) in liver epithelial cells.

Ryan R McWilliams 1, Elizabeth Gidey 1, Laura Fouassier 1, Scott A Weed 1, R Brian Doctor 1
PMCID: PMC1224161  PMID: 14977424

Abstract

Shank proteins are a family of multidomain scaffolding proteins best known for their role in organizing the postsynaptic density region in neurons. Unlike Shank1 and Shank3, Shank2 [also known as Pro-SAP1 (proline-rich synapse-associated protein 1), CortBP1 (cortactin binding protein 1) or Spank-3] has been described as a truncated family member without an N-terminal ankyrin repeat domain. The present study utilized bioinformatics to demonstrate the presence of exons encoding ankyrin repeats in the region preceding the previously described Shank2 gene. cDNA sequencing of mRNA from epithelial cells revealed a novel spliceoform of Shank2, termed Shank2E, that encodes a predicted 200 kDa protein with six N-terminal ankyrin repeats. Shank2 mRNA from epithelial tissues was larger than transcripts in brain. Likewise, the apparent mass of Shank2 protein was larger in epithelial tissues (230 kDa) when compared with brain (165/180 kDa). Immunofluorescence and membrane fractionation found Shank2E concentrated at the apical membrane of liver epithelial cells. In cultured cholangiocytes, co-immunoprecipitation and detergent solubility studies revealed Shank2E complexed with actin and co-distributed with actin in detergent-insoluble lipid rafts. These findings indicate epithelial cells express an ankyrin repeat-containing Shank2 isoform, termed Shank2E, that is poised to co-ordinate actin-dependent events at the apical membrane.

Full Text

The Full Text of this article is available as a PDF (757.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartles J. R., Braiterman L. T., Hubbard A. L. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane. J Cell Biol. 1985 Apr;100(4):1126–1138. doi: 10.1083/jcb.100.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett V., Baines A. J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev. 2001 Jul;81(3):1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  3. Bockmann J., Kreutz M. R., Gundelfinger E. D., Böckers T. M. ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. J Neurochem. 2002 Nov;83(4):1013–1017. doi: 10.1046/j.1471-4159.2002.01204.x. [DOI] [PubMed] [Google Scholar]
  4. Boeckers T. M., Kreutz M. R., Winter C., Zuschratter W., Smalla K. H., Sanmarti-Vila L., Wex H., Langnaese K., Bockmann J., Garner C. C. Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci. 1999 Aug 1;19(15):6506–6518. doi: 10.1523/JNEUROSCI.19-15-06506.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brakeman P. R., Lanahan A. A., O'Brien R., Roche K., Barnes C. A., Huganir R. L., Worley P. F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997 Mar 20;386(6622):284–288. doi: 10.1038/386284a0. [DOI] [PubMed] [Google Scholar]
  6. Böckers T. M., Mameza M. G., Kreutz M. R., Bockmann J., Weise C., Buck F., Richter D., Gundelfinger E. D., Kreienkamp H. J. Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem. 2001 Aug 16;276(43):40104–40112. doi: 10.1074/jbc.M102454200. [DOI] [PubMed] [Google Scholar]
  7. Doctor R. B., Bennett V., Mandel L. J. Degradation of spectrin and ankyrin in the ischemic rat kidney. Am J Physiol. 1993 Apr;264(4 Pt 1):C1003–C1013. doi: 10.1152/ajpcell.1993.264.4.C1003. [DOI] [PubMed] [Google Scholar]
  8. Doctor R. B., Dahl R. H., Salter K. D., Fitz J. G. Reorganization of cholangiocyte membrane domains represents an early event in rat liver ischemia. Hepatology. 1999 May;29(5):1364–1374. doi: 10.1002/hep.510290514. [DOI] [PubMed] [Google Scholar]
  9. Du Y., Weed S. A., Xiong W. C., Marshall T. D., Parsons J. T. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol. 1998 Oct;18(10):5838–5851. doi: 10.1128/mcb.18.10.5838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fouassier L., Duan C. Y., Feranchak A. P., Yun C. H., Sutherland E., Simon F., Fitz J. G., Doctor R. B. Ezrin-radixin-moesin-binding phosphoprotein 50 is expressed at the apical membrane of rat liver epithelia. Hepatology. 2001 Jan;33(1):166–176. doi: 10.1053/jhep.2001.21143. [DOI] [PubMed] [Google Scholar]
  11. Fouassier L., Yun C. C., Fitz J. G., Doctor R. B. Evidence for ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) self-association through PDZ-PDZ interactions. J Biol Chem. 2000 Aug 11;275(32):25039–25045. doi: 10.1074/jbc.C000092200. [DOI] [PubMed] [Google Scholar]
  12. Gumpricht E., Devereaux M. W., Dahl R. H., Sokol R. J. Glutathione status of isolated rat hepatocytes affects bile acid-induced cellular necrosis but not apoptosis. Toxicol Appl Pharmacol. 2000 Apr 1;164(1):102–111. doi: 10.1006/taap.2000.8894. [DOI] [PubMed] [Google Scholar]
  13. Jacob Ralf, Heine Martin, Alfalah Marwan, Naim Hassan Y. Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol. 2003 Apr 1;13(7):607–612. doi: 10.1016/s0960-9822(03)00188-x. [DOI] [PubMed] [Google Scholar]
  14. Kilic G., Doctor R. B., Fitz J. G. Insulin stimulates membrane conductance in a liver cell line: evidence for insertion of ion channels through a phosphoinositide 3-kinase-dependent mechanism. J Biol Chem. 2001 May 10;276(29):26762–26768. doi: 10.1074/jbc.M100992200. [DOI] [PubMed] [Google Scholar]
  15. Kunzelmann K., Schreiber R., Nitschke R., Mall M. Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator. Pflugers Arch. 2000 Jun;440(2):193–201. doi: 10.1007/s004240000255. [DOI] [PubMed] [Google Scholar]
  16. Lim S., Naisbitt S., Yoon J., Hwang J. I., Suh P. G., Sheng M., Kim E. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem. 1999 Oct 8;274(41):29510–29518. doi: 10.1074/jbc.274.41.29510. [DOI] [PubMed] [Google Scholar]
  17. Lim S., Sala C., Yoon J., Park S., Kuroda S., Sheng M., Kim E. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol Cell Neurosci. 2001 Feb;17(2):385–397. doi: 10.1006/mcne.2000.0940. [DOI] [PubMed] [Google Scholar]
  18. Lisanti M. P., Tang Z. L., Sargiacomo M. Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J Cell Biol. 1993 Nov;123(3):595–604. doi: 10.1083/jcb.123.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Müller M., Roelofsen H., Jansen P. L. Secretion of organic anions by hepatocytes: involvement of homologues of the multidrug resistance protein. Semin Liver Dis. 1996 May;16(2):211–220. doi: 10.1055/s-2007-1007233. [DOI] [PubMed] [Google Scholar]
  21. Naisbitt S., Kim E., Tu J. C., Xiao B., Sala C., Valtschanoff J., Weinberg R. J., Worley P. F., Sheng M. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999 Jul;23(3):569–582. doi: 10.1016/s0896-6273(00)80809-0. [DOI] [PubMed] [Google Scholar]
  22. Niethammer M., Kim E., Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci. 1996 Apr 1;16(7):2157–2163. doi: 10.1523/JNEUROSCI.16-07-02157.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okamoto P. M., Gamby C., Wells D., Fallon J., Vallee R. B. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem. 2001 Oct 2;276(51):48458–48465. doi: 10.1074/jbc.M104927200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Orth James D., McNiven Mark A. Dynamin at the actin-membrane interface. Curr Opin Cell Biol. 2003 Feb;15(1):31–39. doi: 10.1016/s0955-0674(02)00010-8. [DOI] [PubMed] [Google Scholar]
  25. Park Eunhye, Na Moonseok, Choi Jeonghoon, Kim Seho, Lee Jae-Ran, Yoon Jiyoung, Park Dongeun, Sheng Morgan, Kim Eunjoon. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J Biol Chem. 2003 Mar 7;278(21):19220–19229. doi: 10.1074/jbc.M301052200. [DOI] [PubMed] [Google Scholar]
  26. Qualmann Britta, Kessels Michael M. Endocytosis and the cytoskeleton. Int Rev Cytol. 2002;220:93–144. doi: 10.1016/s0074-7696(02)20004-2. [DOI] [PubMed] [Google Scholar]
  27. Redecker P., Gundelfinger E. D., Boeckers T. M. The cortactin-binding postsynaptic density protein proSAP1 in non-neuronal cells. J Histochem Cytochem. 2001 May;49(5):639–648. doi: 10.1177/002215540104900511. [DOI] [PubMed] [Google Scholar]
  28. Salter K. D., Roman R. M., LaRusso N. R., Fitz J. G., Doctor R. B. Modified culture conditions enhance expression of differentiated phenotypic properties of normal rat cholangiocytes. Lab Invest. 2000 Nov;80(11):1775–1778. doi: 10.1038/labinvest.3780187. [DOI] [PubMed] [Google Scholar]
  29. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Soltau Michaela, Richter Dietmar, Kreienkamp Hans-Jürgen. The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42. Mol Cell Neurosci. 2002 Dec;21(4):575–583. doi: 10.1006/mcne.2002.1201. [DOI] [PubMed] [Google Scholar]
  31. Sparks A. B., Rider J. E., Hoffman N. G., Fowlkes D. M., Quillam L. A., Kay B. K. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1540–1544. doi: 10.1073/pnas.93.4.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sutherland E., Dixon B. S., Leffert H. L., Skally H., Zaccaro L., Simon F. R. Biochemical localization of hepatic surface-membrane Na+,K+-ATPase activity depends on membrane lipid fluidity. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8673–8677. doi: 10.1073/pnas.85.22.8673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taunton J., Rowning B. A., Coughlin M. L., Wu M., Moon R. T., Mitchison T. J., Larabell C. A. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J Cell Biol. 2000 Feb 7;148(3):519–530. doi: 10.1083/jcb.148.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tobaben S., Südhof T. C., Stahl B. The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family. J Biol Chem. 2000 Nov 17;275(46):36204–36210. doi: 10.1074/jbc.M006448200. [DOI] [PubMed] [Google Scholar]
  35. Tu J. C., Xiao B., Naisbitt S., Yuan J. P., Petralia R. S., Brakeman P., Doan A., Aakalu V. K., Lanahan A. A., Sheng M. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999 Jul;23(3):583–592. doi: 10.1016/s0896-6273(00)80810-7. [DOI] [PubMed] [Google Scholar]
  36. Usui Shinichi, Konno Daijiro, Hori Kei, Maruoka Hisato, Okabe Shigeo, Fujikado Takashi, Tano Yasuo, Sobue Kenji. Synaptic targeting of PSD-Zip45 (Homer 1c) and its involvement in the synaptic accumulation of F-actin. J Biol Chem. 2003 Jan 10;278(12):10619–10628. doi: 10.1074/jbc.M210802200. [DOI] [PubMed] [Google Scholar]
  37. Valtschanoff J. G., Weinberg R. J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci. 2001 Feb 15;21(4):1211–1217. doi: 10.1523/JNEUROSCI.21-04-01211.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vroman B., LaRusso N. F. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells. Lab Invest. 1996 Jan;74(1):303–313. [PubMed] [Google Scholar]
  39. Wu H., Parsons J. T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol. 1993 Mar;120(6):1417–1426. doi: 10.1083/jcb.120.6.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yao I., Hata Y., Hirao K., Deguchi M., Ide N., Takeuchi M., Takai Y. Synamon, a novel neuronal protein interacting with synapse-associated protein 90/postsynaptic density-95-associated protein. J Biol Chem. 1999 Sep 24;274(39):27463–27466. doi: 10.1074/jbc.274.39.27463. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES