Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):549–560. doi: 10.1042/BJ20031607

Nucleotides and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter.

András Kern 1, Zsófia Szentpétery 1, Károly Liliom 1, Eva Bakos 1, Balázs Sarkadi 1, András Váradi 1
PMCID: PMC1224167  PMID: 14759224

Abstract

The human ABC (ATP-binding cassette) transporter MRP1 (human multidrug-resistance-associated protein 1; ABCC1) is involved in the cellular extrusion of conjugated metabolites and causes multidrug resistance in tumour cells. The transport of substrate molecules by ABC proteins is energized by ATP hydrolysis, performed by two co-operating ABC units. Orthovanadate (Vi), a non-covalent inhibitor of the ABC ATPases, was found to catalyse a photo-oxidative cleavage of various ATP-binding proteins. In the present study, we have identified three Vi-cleavage sites within MRP1, and found that the cleavage reactions were variably modulated by the presence of nucleotides and by transported substrates. We concluded that Vi cleavage of MRP1 at Site I detects conformational changes due to the binding of MgATP. In contrast, Site II could be identified as part of the substrate-modulated catalytic cycle, probably containing an MRP1.MgADP.Vi transition-state-like complex. Cleavage at Site III was modulated by both the binding and hydrolysis of MgATP, in a biphasic pattern, which was also affected by the presence of transported substrates. We detected two different allosteric effects and found that they control two consecutive steps of the MRP1 ATPase catalytic cycle. Nucleotide binding to the low-affinity site accelerated the formation of the pre-hydrolytic intermediate in the other catalytic centre. Interaction of the transporter with its transported substrates stimulated a later reaction of the hydrolytic cycle, the formation of the post-hydrolytic intermediate, which could be detected in both catalytic sites by the experimental strategy used.

Full Text

The Full Text of this article is available as a PDF (681.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakos E, Hegedüs T., Holló Z., Welker E., Tusnády G. E., Zaman G. J., Flens M. J., Váradi A., Sarkadi B. Membrane topology and glycosylation of the human multidrug resistance-associated protein. J Biol Chem. 1996 May 24;271(21):12322–12326. doi: 10.1074/jbc.271.21.12322. [DOI] [PubMed] [Google Scholar]
  2. Bakos E., Evers R., Sinkó E., Váradi A., Borst P., Sarkadi B. Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000 Apr;57(4):760–768. doi: 10.1124/mol.57.4.760. [DOI] [PubMed] [Google Scholar]
  3. Bakos E., Evers R., Szakács G., Tusnády G. E., Welker E., Szabó K., de Haas M., van Deemter L., Borst P., Váradi A. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem. 1998 Nov 27;273(48):32167–32175. doi: 10.1074/jbc.273.48.32167. [DOI] [PubMed] [Google Scholar]
  4. Chang Geoffrey. Structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation. J Mol Biol. 2003 Jul 4;330(2):419–430. doi: 10.1016/s0022-2836(03)00587-4. [DOI] [PubMed] [Google Scholar]
  5. Chang X. B., Hou Y. X., Riordan J. R. ATPase activity of purified multidrug resistance-associated protein. J Biol Chem. 1997 Dec 5;272(49):30962–30968. doi: 10.1074/jbc.272.49.30962. [DOI] [PubMed] [Google Scholar]
  6. Chen Jue, Lu Gang, Lin Jeffrey, Davidson Amy L., Quiocho Florante A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell. 2003 Sep;12(3):651–661. doi: 10.1016/j.molcel.2003.08.004. [DOI] [PubMed] [Google Scholar]
  7. Cremo C. R., Grammer J. C., Yount R. G. Direct chemical evidence that serine 180 in the glycine-rich loop of myosin binds to ATP. J Biol Chem. 1989 Apr 25;264(12):6608–6611. [PubMed] [Google Scholar]
  8. Daoud R., Julien M., Gros P., Georges E. Major photoaffinity drug binding sites in multidrug resistance protein 1 (MRP1) are within transmembrane domains 10-11 and 16-17. J Biol Chem. 2001 Jan 4;276(15):12324–12330. doi: 10.1074/jbc.M009782200. [DOI] [PubMed] [Google Scholar]
  9. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  10. Flens M. J., Izquierdo M. A., Scheffer G. L., Fritz J. M., Meijer C. J., Scheper R. J., Zaman G. J. Immunochemical detection of the multidrug resistance-associated protein MRP in human multidrug-resistant tumor cells by monoclonal antibodies. Cancer Res. 1994 Sep 1;54(17):4557–4563. [PubMed] [Google Scholar]
  11. Gao M., Cui H. R., Loe D. W., Grant C. E., Almquist K. C., Cole S. P., Deeley R. G. Comparison of the functional characteristics of the nucleotide binding domains of multidrug resistance protein 1. J Biol Chem. 2000 Apr 28;275(17):13098–13108. doi: 10.1074/jbc.275.17.13098. [DOI] [PubMed] [Google Scholar]
  12. Goodno C. C. Myosin active-site trapping with vanadate ion. Methods Enzymol. 1982;85(Pt B):116–123. doi: 10.1016/0076-6879(82)85014-3. [DOI] [PubMed] [Google Scholar]
  13. Grammer J. C., Loo J. A., Edmonds C. G., Cremo C. R., Yount R. G. Chemistry and mechanism of vanadate-promoted photooxidative cleavage of myosin. Biochemistry. 1996 Dec 3;35(48):15582–15592. doi: 10.1021/bi961901g. [DOI] [PubMed] [Google Scholar]
  14. Haimeur Anass, Deeley Roger G., Cole Susan P. C. Charged amino acids in the sixth transmembrane helix of multidrug resistance protein 1 (MRP1/ABCC1) are critical determinants of transport activity. J Biol Chem. 2002 Aug 18;277(44):41326–41333. doi: 10.1074/jbc.M206228200. [DOI] [PubMed] [Google Scholar]
  15. Holló Z., Homolya L., Hegedüs T., Sarkadi B. Transport properties of the multidrug resistance-associated protein (MRP) in human tumour cells. FEBS Lett. 1996 Mar 25;383(1-2):99–104. doi: 10.1016/0014-5793(96)00237-2. [DOI] [PubMed] [Google Scholar]
  16. Hopfner K. P., Karcher A., Shin D. S., Craig L., Arthur L. M., Carney J. P., Tainer J. A. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell. 2000 Jun 23;101(7):789–800. doi: 10.1016/s0092-8674(00)80890-9. [DOI] [PubMed] [Google Scholar]
  17. Hou Y., Cui L., Riordan J. R., Chang X. Allosteric interactions between the two non-equivalent nucleotide binding domains of multidrug resistance protein MRP1. J Biol Chem. 2000 Jul 7;275(27):20280–20287. doi: 10.1074/jbc.M001109200. [DOI] [PubMed] [Google Scholar]
  18. Hou Yue-xian, Cui Liying, Riordan John R., Chang Xiu-bao. ATP binding to the first nucleotide-binding domain of multidrug resistance protein MRP1 increases binding and hydrolysis of ATP and trapping of ADP at the second domain. J Biol Chem. 2001 Dec 7;277(7):5110–5119. doi: 10.1074/jbc.M107133200. [DOI] [PubMed] [Google Scholar]
  19. Hou Yue-xian, Riordan John R., Chang Xiu-bao. ATP binding, not hydrolysis, at the first nucleotide-binding domain of multidrug resistance-associated protein MRP1 enhances ADP.Vi trapping at the second domain. J Biol Chem. 2002 Nov 27;278(6):3599–3605. doi: 10.1074/jbc.M210480200. [DOI] [PubMed] [Google Scholar]
  20. Hrycyna C. A., Ramachandra M., Ambudkar S. V., Ko Y. H., Pedersen P. L., Pastan I., Gottesman M. M. Mechanism of action of human P-glycoprotein ATPase activity. Photochemical cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the two ATP sites. J Biol Chem. 1998 Jul 3;273(27):16631–16634. doi: 10.1074/jbc.273.27.16631. [DOI] [PubMed] [Google Scholar]
  21. Ito K., Olsen S. L., Qiu W., Deeley R. G., Cole S. P. Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. J Biol Chem. 2001 Feb 21;276(19):15616–15624. doi: 10.1074/jbc.M011246200. [DOI] [PubMed] [Google Scholar]
  22. Karwatsky Joel, Daoud Roni, Cai Jie, Gros Philippe, Georges Elias. Binding of a photoaffinity analogue of glutathione to MRP1 (ABCC1) within two cytoplasmic regions (L0 and L1) as well as transmembrane domains 10-11 and 16-17. Biochemistry. 2003 Mar 25;42(11):3286–3294. doi: 10.1021/bi0268807. [DOI] [PubMed] [Google Scholar]
  23. Locher Kaspar P., Lee Allen T., Rees Douglas C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 2002 May 10;296(5570):1091–1098. doi: 10.1126/science.1071142. [DOI] [PubMed] [Google Scholar]
  24. Manciu Liliana, Chang Xiu-Bao, Buyse Frédéric, Hou Yue-Xian, Gustot Adelin, Riordan John R., Ruysschaert Jean Marie. Intermediate structural states involved in MRP1-mediated drug transport. Role of glutathione. J Biol Chem. 2002 Nov 6;278(5):3347–3356. doi: 10.1074/jbc.M207963200. [DOI] [PubMed] [Google Scholar]
  25. Müller M., Bakos E., Welker E., Váradi A., Germann U. A., Gottesman M. M., Morse B. S., Roninson I. B., Sarkadi B. Altered drug-stimulated ATPase activity in mutants of the human multidrug resistance protein. J Biol Chem. 1996 Jan 26;271(4):1877–1883. doi: 10.1074/jbc.271.4.1877. [DOI] [PubMed] [Google Scholar]
  26. Nagata K., Nishitani M., Matsuo M., Kioka N., Amachi T., Ueda K. Nonequivalent nucleotide trapping in the two nucleotide binding folds of the human multidrug resistance protein MRP1. J Biol Chem. 2000 Jun 9;275(23):17626–17630. doi: 10.1074/jbc.M000792200. [DOI] [PubMed] [Google Scholar]
  27. Ren X. Q., Furukawa T., Aoki S., Nakajima T., Sumizawa T., Haraguchi M., Chen Z. S., Kobayashi M., Akiyama S. Glutathione-dependent binding of a photoaffinity analog of agosterol A to the C-terminal half of human multidrug resistance protein. J Biol Chem. 2001 Apr 11;276(25):23197–23206. doi: 10.1074/jbc.M101554200. [DOI] [PubMed] [Google Scholar]
  28. Rosenberg M. F., Velarde G., Ford R. C., Martin C., Berridge G., Kerr I. D., Callaghan R., Schmidlin A., Wooding C., Linton K. J. Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J. 2001 Oct 15;20(20):5615–5625. doi: 10.1093/emboj/20.20.5615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenberg Mark F., Kamis Alhaji Bukar, Callaghan Richard, Higgins Christopher F., Ford Robert C. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem. 2002 Dec 25;278(10):8294–8299. doi: 10.1074/jbc.M211758200. [DOI] [PubMed] [Google Scholar]
  30. Sankaran B., Bhagat S., Senior A. E. Inhibition of P-glycoprotein ATPase activity by beryllium fluoride. Biochemistry. 1997 Jun 3;36(22):6847–6853. doi: 10.1021/bi970034s. [DOI] [PubMed] [Google Scholar]
  31. Sarkadi B., Price E. M., Boucher R. C., Germann U. A., Scarborough G. A. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992 Mar 5;267(7):4854–4858. [PubMed] [Google Scholar]
  32. Sauna Z. E., Ambudkar S. V. Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2515–2520. doi: 10.1073/pnas.97.6.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  34. Smith Paul C., Karpowich Nathan, Millen Linda, Moody Jonathan E., Rosen Jane, Thomas Philip J., Hunt John F. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell. 2002 Jul;10(1):139–149. doi: 10.1016/s1097-2765(02)00576-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Szabó K., Welker E., Bakos, Müller M., Roninson I., Váradi A., Sarkadi B. Drug-stimulated nucleotide trapping in the human multidrug transporter MDR1. Cooperation of the nucleotide binding domains. J Biol Chem. 1998 Apr 24;273(17):10132–10138. doi: 10.1074/jbc.273.17.10132. [DOI] [PubMed] [Google Scholar]
  36. Taguchi Y., Yoshida A., Takada Y., Komano T., Ueda K. Anti-cancer drugs and glutathione stimulate vanadate-induced trapping of nucleotide in multidrug resistance-associated protein (MRP). FEBS Lett. 1997 Jan 13;401(1):11–14. doi: 10.1016/s0014-5793(96)01421-4. [DOI] [PubMed] [Google Scholar]
  37. Tusnády G. E., Bakos E., Váradi A., Sarkadi B. Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. FEBS Lett. 1997 Jan 27;402(1):1–3. doi: 10.1016/s0014-5793(96)01478-0. [DOI] [PubMed] [Google Scholar]
  38. Urbatsch I. L., Sankaran B., Bhagat S., Senior A. E. Both P-glycoprotein nucleotide-binding sites are catalytically active. J Biol Chem. 1995 Nov 10;270(45):26956–26961. doi: 10.1074/jbc.270.45.26956. [DOI] [PubMed] [Google Scholar]
  39. Urbatsch I. L., Sankaran B., Weber J., Senior A. E. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J Biol Chem. 1995 Aug 18;270(33):19383–19390. doi: 10.1074/jbc.270.33.19383. [DOI] [PubMed] [Google Scholar]
  40. Yang Runying, Cui Liying, Hou Yue-xian, Riordan John R., Chang Xiu-bao. ATP binding to the first nucleotide binding domain of multidrug resistance-associated protein plays a regulatory role at low nucleotide concentration, whereas ATP hydrolysis at the second plays a dominant role in ATP-dependent leukotriene C4 transport. J Biol Chem. 2003 Jun 3;278(33):30764–30771. doi: 10.1074/jbc.M304118200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES