Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):475–486. doi: 10.1042/BJ20031934

Cloning, tissue distribution, pharmacology and three-dimensional modelling of melanocortin receptors 4 and 5 in rainbow trout suggest close evolutionary relationship of these subtypes.

Tatjana Haitina 1, Janis Klovins 1, Jan Andersson 1, Robert Fredriksson 1, Malin C Lagerström 1, Dan Larhammar 1, Earl T Larson 1, Helgi B Schiöth 1
PMCID: PMC1224171  PMID: 14965341

Abstract

The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that these receptors are orthologues of the human MC4 and MC5 receptors. We created 3D molecular models of these rainbow trout receptors and their human counterparts. These models suggest greater divergence between the two human receptors than between their rainbow trout counterparts. The pharmacological analyses demonstrated that ACTH (adrenocorticotropic hormone) had surprisingly high affinity for the rainbow trout MC4 and MC5 receptors, whereas alpha-, beta- and gamma-MSH (melanocyte-stimulating hormone) had lower affinity. In second-messenger studies, the cyclic MSH analogues MTII and SHU9119 acted as potent agonist and antagonist respectively at the rainbow trout MC4 receptor, indicating that these ligands are suitable for physiological studies in rainbow trout. Interestingly, we found that the rainbow trout MC4 receptor has a natural high-affinity binding site for zinc ions (0.5 microM) indicating that zinc may play an evolutionary conserved role at this receptor. Reverse transcription PCR indicates that the rainbow trout receptors are expressed both in peripheral tissues and in the central nervous system, including the telencephalon, optic tectum and hypothalamus. Overall, this analysis indicates that the rainbow trout MC4 and MC5 receptors have more in common than their mammalian counterparts, which may suggest that these two receptors have a closer evolutionary relationship than the other MC receptor subtypes.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assaf S. Y., Chung S. H. Release of endogenous Zn2+ from brain tissue during activity. Nature. 1984 Apr 19;308(5961):734–736. doi: 10.1038/308734a0. [DOI] [PubMed] [Google Scholar]
  2. Cerdá-Reverter José Miguel, Ringholm Aneta, Schiöth Helgi Birgir, Peter Richard Ector. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. Endocrinology. 2003 Jun;144(6):2336–2349. doi: 10.1210/en.2002-0213. [DOI] [PubMed] [Google Scholar]
  3. Chen W., Kelly M. A., Opitz-Araya X., Thomas R. E., Low M. J., Cone R. D. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell. 1997 Dec 12;91(6):789–798. doi: 10.1016/s0092-8674(00)80467-5. [DOI] [PubMed] [Google Scholar]
  4. Chhajlani V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Int. 1996 Feb;38(1):73–80. [PubMed] [Google Scholar]
  5. Fan W., Boston B. A., Kesterson R. A., Hruby V. J., Cone R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature. 1997 Jan 9;385(6612):165–168. doi: 10.1038/385165a0. [DOI] [PubMed] [Google Scholar]
  6. Fredriksson Robert, Lagerström Malin C., Lundin Lars-Gustav, Schiöth Helgi B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003 Jun;63(6):1256–1272. doi: 10.1124/mol.63.6.1256. [DOI] [PubMed] [Google Scholar]
  7. Holst Birgitte, Elling Christian E., Schwartz Thue W. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J Biol Chem. 2002 Sep 18;277(49):47662–47670. doi: 10.1074/jbc.M202103200. [DOI] [PubMed] [Google Scholar]
  8. Huang E. P. Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13386–13387. doi: 10.1073/pnas.94.25.13386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huszar D., Lynch C. A., Fairchild-Huntress V., Dunmore J. H., Fang Q., Berkemeier L. R., Gu W., Kesterson R. A., Boston B. A., Cone R. D. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997 Jan 10;88(1):131–141. doi: 10.1016/s0092-8674(00)81865-6. [DOI] [PubMed] [Google Scholar]
  10. Kask A., Mutulis F., Muceniece R., Pähkla R., Mutule I., Wikberg J. E., Rägo L., Schiöth H. B. Discovery of a novel superpotent and selective melanocortin-4 receptor antagonist (HS024): evaluation in vitro and in vivo. Endocrinology. 1998 Dec;139(12):5006–5014. doi: 10.1210/endo.139.12.6352. [DOI] [PubMed] [Google Scholar]
  11. Klovins Janis, Haitina Tatjana, Fridmanis Davids, Kilianova Zuzana, Kapa Ivo, Fredriksson Robert, Gallo-Payet Nicole, Schiöth Helgi B. The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs. Mol Biol Evol. 2003 Dec 23;21(3):563–579. doi: 10.1093/molbev/msh050. [DOI] [PubMed] [Google Scholar]
  12. Lagerström Malin C., Klovins Janis, Fredriksson Robert, Fridmanis Davids, Haitina Tatjana, Ling Maria K., Berglund Magnus M., Schiöth Helgi B. High affinity agonistic metal ion binding sites within the melanocortin 4 receptor illustrate conformational change of transmembrane region 3. J Biol Chem. 2003 Sep 30;278(51):51521–51526. doi: 10.1074/jbc.M307683200. [DOI] [PubMed] [Google Scholar]
  13. Larson Earl T., Fredriksson Robert, Johansson Sara R. T., Larhammar Dan. Cloning, pharmacology, and distribution of the neuropeptide Y-receptor Yb in rainbow trout. Peptides. 2003 Mar;24(3):385–395. doi: 10.1016/s0196-9781(03)00053-6. [DOI] [PubMed] [Google Scholar]
  14. Marklund Ulrica, Byström Mona, Gedda Karin, Larefalk Asa, Juneblad Kristina, Nyström Susanne, Ekstrand A. Jonas. Intron-mediated expression of the human neuropeptide Y Y1 receptor. Mol Cell Endocrinol. 2002 Feb 25;188(1-2):85–97. doi: 10.1016/s0303-7207(01)00738-9. [DOI] [PubMed] [Google Scholar]
  15. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  16. Pérez-Castejón C., Vera-Gil A., Barral M. J., Pérez-Castejón M. J., Lahoz M. Zinc in hypothalamus and hypophysis of the rat. Histol Histopathol. 1994 Apr;9(2):259–262. [PubMed] [Google Scholar]
  17. Ringholm Aneta, Fredriksson Robert, Poliakova Natalia, Yan Yi-Lin, Postlethwait John H., Larhammar Dan, Schiöth Helgi B. One melanocortin 4 and two melanocortin 5 receptors from zebrafish show remarkable conservation in structure and pharmacology. J Neurochem. 2002 Jul;82(1):6–18. doi: 10.1046/j.1471-4159.2002.00934.x. [DOI] [PubMed] [Google Scholar]
  18. Ringholm Aneta, Klovins Janis, Fredriksson Robert, Poliakova Natalia, Larson Earl T., Kukkonen Jyrki P., Larhammar Dan, Schiöth Helgi B. Presence of melanocortin (MC4) receptor in spiny dogfish suggests an ancient vertebrate origin of central melanocortin system. Eur J Biochem. 2003 Jan;270(2):213–221. doi: 10.1046/j.1432-1033.2003.03371.x. [DOI] [PubMed] [Google Scholar]
  19. Robinson-Rechavi M., Marchand O., Escriva H., Bardet P. L., Zelus D., Hughes S., Laudet V. Euteleost fish genomes are characterized by expansion of gene families. Genome Res. 2001 May;11(5):781–788. doi: 10.1101/gr.165601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schiöth H. B., Muceniece R., Larsson M., Wikberg J. E. The melanocortin 1, 3, 4 or 5 receptors do not have a binding epitope for ACTH beyond the sequence of alpha-MSH. J Endocrinol. 1997 Oct;155(1):73–78. doi: 10.1677/joe.0.1550073. [DOI] [PubMed] [Google Scholar]
  21. Schiöth H. B., Muceniece R., Wikberg J. E. Characterisation of the melanocortin 4 receptor by radioligand binding. Pharmacol Toxicol. 1996 Sep;79(3):161–165. doi: 10.1111/j.1600-0773.1996.tb00261.x. [DOI] [PubMed] [Google Scholar]
  22. Schiöth H. B., Muceniece R., Wikberg J. E., Chhajlani V. Characterisation of melanocortin receptor subtypes by radioligand binding analysis. Eur J Pharmacol. 1995 Feb 15;288(3):311–317. doi: 10.1016/0922-4106(95)90043-8. [DOI] [PubMed] [Google Scholar]
  23. Schiöth H. B., Müceniece R., Mutulis F., Prusis P., Lindeberg G., Sharma S. D., Hruby V. J., Wikberg J. E. Selectivity of cyclic [D-Nal7] and [D-Phe7] substituted MSH analogues for the melanocortin receptor subtypes. Peptides. 1997;18(7):1009–1013. doi: 10.1016/s0196-9781(97)00079-x. [DOI] [PubMed] [Google Scholar]
  24. Schiöth H. B. The physiological role of melanocortin receptors. Vitam Horm. 2001;63:195–232. doi: 10.1016/s0083-6729(01)63007-3. [DOI] [PubMed] [Google Scholar]
  25. Schiöth Helgi B., Bouifrouri Amin A., Rudzish Richard, Muceniece Ruta, Watanobe Hajime, Wikberg Jarl E. S., Larhammar Dan. Pharmacological comparison of rat and human melanocortin 3 and 4 receptors in vitro. Regul Pept. 2002 Jun 15;106(1-3):7–12. doi: 10.1016/s0167-0115(02)00025-3. [DOI] [PubMed] [Google Scholar]
  26. Takeuchi S., Takahashi S. Melanocortin receptor genes in the chicken--tissue distributions. Gen Comp Endocrinol. 1998 Nov;112(2):220–231. doi: 10.1006/gcen.1998.7167. [DOI] [PubMed] [Google Scholar]
  27. Taylor J. S., Van de Peer Y., Braasch I., Meyer A. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci. 2001 Oct 29;356(1414):1661–1679. doi: 10.1098/rstb.2001.0975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thorgaard Gary H., Bailey George S., Williams David, Buhler Donald R., Kaattari Stephen L., Ristow Sandra S., Hansen John D., Winton James R., Bartholomew Jerri L., Nagler James J. Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol. 2002 Dec;133(4):609–646. doi: 10.1016/s1096-4959(02)00167-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES