Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):339–346. doi: 10.1042/BJ20031762

The active site and substrate-binding mode of 1-aminocyclopropane-1-carboxylate oxidase determined by site-directed mutagenesis and comparative modelling studies.

Young Sam Seo 1, Ahrim Yoo 1, Jinwon Jung 1, Soon-Kee Sung 1, Dae Ryook Yang 1, Woo Taek Kim 1, Weontae Lee 1
PMCID: PMC1224174  PMID: 14972027

Abstract

The active site and substrate-binding mode of MD-ACO1 (Malus domestica Borkh. 1-aminocyclopropane-1-carboxylate oxidase) have been determined using site-directed mutagenesis and comparative modelling methods. The MD-ACO1 protein folds into a compact jelly-roll motif comprised of eight a-helices, 12 b-strands and several long loops. The active site is well defined as a wide cleft near the C-terminus. The co-substrate ascorbate is located in cofactor Fe2+-binding pocket, the so-called '2-His-1-carboxylate facial triad'. In addition, our results reveal that Arg244 and Ser246 are involved in generating the reaction product during enzyme catalysis. The structure agrees well with the biochemical and site-directed mutagenesis results. The three-dimensional structure together with the steady-state kinetics of both the wild-type and mutant MD-ACO1 proteins reveal how the substrate specificity of MD-ACO1 is involved in the catalytic mechanism, providing insights into understanding the fruit ripening process at atomic resolution.

Full Text

The Full Text of this article is available as a PDF (668.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Brunhuber N. M., Mort J. L., Christoffersen R. E., Reich N. O. Steady-state kinetic mechanism of recombinant avocado ACC oxidase: initial velocity and inhibitor studies. Biochemistry. 2000 Sep 5;39(35):10730–10738. doi: 10.1021/bi0000162. [DOI] [PubMed] [Google Scholar]
  3. Burzlaff N. I., Rutledge P. J., Clifton I. J., Hensgens C. M., Pickford M., Adlington R. M., Roach P. L., Baldwin J. E. The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature. 1999 Oct 14;401(6754):721–724. doi: 10.1038/44400. [DOI] [PubMed] [Google Scholar]
  4. Canutescu Adrian A., Shelenkov Andrew A., Dunbrack Roland L., Jr A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003 Sep;12(9):2001–2014. doi: 10.1110/ps.03154503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dong J. G., Fernández-Maculet J. C., Yang S. F. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9789–9793. doi: 10.1073/pnas.89.20.9789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flohil J. A., Vriend G., Berendsen H. J. C. Completion and refinement of 3-D homology models with restricted molecular dynamics: application to targets 47, 58, and 111 in the CASP modeling competition and posterior analysis. Proteins. 2002 Sep 1;48(4):593–604. doi: 10.1002/prot.10105. [DOI] [PubMed] [Google Scholar]
  7. Goodsell D. S., Olson A. J. Automated docking of substrates to proteins by simulated annealing. Proteins. 1990;8(3):195–202. doi: 10.1002/prot.340080302. [DOI] [PubMed] [Google Scholar]
  8. Hamilton A. J., Bouzayen M., Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7434–7437. doi: 10.1073/pnas.88.16.7434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones D. T. GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol. 1999 Apr 9;287(4):797–815. doi: 10.1006/jmbi.1999.2583. [DOI] [PubMed] [Google Scholar]
  10. Jung J. W., An J. H., Na K. B., Kim Y. S., Lee W. The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies. Protein Sci. 2000 Jul;9(7):1294–1303. doi: 10.1110/ps.9.7.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kende H., Zeevaart JAD. The Five "Classical" Plant Hormones. Plant Cell. 1997 Jul;9(7):1197–1210. doi: 10.1105/tpc.9.7.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kreisberg-Zakarin R., Borovok I., Yanko M., Frolow F., Aharonowitz Y., Cohen G. Structure-function studies of the non-heme iron active site of isopenicillin N synthase: some implications for catalysis. Biophys Chem. 2000 Aug 30;86(2-3):109–118. doi: 10.1016/s0301-4622(00)00123-x. [DOI] [PubMed] [Google Scholar]
  13. Lee H. J., Lloyd M. D., Harlos K., Clifton I. J., Baldwin J. E., Schofield C. J. Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). J Mol Biol. 2001 May 18;308(5):937–948. doi: 10.1006/jmbi.2001.4649. [DOI] [PubMed] [Google Scholar]
  14. Roach P. L., Clifton I. J., Fülöp V., Harlos K., Barton G. J., Hajdu J., Andersson I., Schofield C. J., Baldwin J. E. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature. 1995 Jun 22;375(6533):700–704. doi: 10.1038/375700a0. [DOI] [PubMed] [Google Scholar]
  15. Roach P. L., Clifton I. J., Hensgens C. M., Shibata N., Schofield C. J., Hajdu J., Baldwin J. E. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature. 1997 Jun 19;387(6635):827–830. doi: 10.1038/42990. [DOI] [PubMed] [Google Scholar]
  16. Rocklin A. M., Tierney D. L., Kofman V., Brunhuber N. M., Hoffman B. M., Christoffersen R. E., Reich N. O., Lipscomb J. D., Que L., Jr Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7905–7909. doi: 10.1073/pnas.96.14.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995 Nov;23(3):318–326. doi: 10.1002/prot.340230306. [DOI] [PubMed] [Google Scholar]
  18. Schofield C. J., Zhang Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol. 1999 Dec;9(6):722–731. doi: 10.1016/s0959-440x(99)00036-6. [DOI] [PubMed] [Google Scholar]
  19. Sotriffer C. A., Flader W., Winger R. H., Rode B. M., Liedl K. R., Varga J. M. Automated docking of ligands to antibodies: methods and applications. Methods. 2000 Mar;20(3):280–291. doi: 10.1006/meth.1999.0922. [DOI] [PubMed] [Google Scholar]
  20. Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell. 1992 Jul 24;70(2):181–184. doi: 10.1016/0092-8674(92)90093-r. [DOI] [PubMed] [Google Scholar]
  21. Thrower J. S., Blalock R., 3rd, Klinman J. P. Steady-state kinetics of substrate binding and iron release in tomato ACC oxidase. Biochemistry. 2001 Aug 14;40(32):9717–9724. doi: 10.1021/bi010329c. [DOI] [PubMed] [Google Scholar]
  22. Zhang Z., Barlow J. N., Baldwin J. E., Schofield C. J. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry. 1997 Dec 16;36(50):15999–16007. doi: 10.1021/bi971823c. [DOI] [PubMed] [Google Scholar]
  23. Zhou Jing, Rocklin Amy M., Lipscomb John D., Que Lawrence, Jr, Solomon Edward I. Spectroscopic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: molecular mechanism and CO(2) activation in the biosynthesis of ethylene. J Am Chem Soc. 2002 May 1;124(17):4602–4609. doi: 10.1021/ja017250f. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES