Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):385–392. doi: 10.1042/BJ20031810

Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P.

Philipp Markart 1, Nicole Faust 1, Thomas Graf 1, Cheng-Lun Na 1, Timothy E Weaver 1, Henry T Akinbi 1
PMCID: PMC1224176  PMID: 14977423

Abstract

Lysozyme is one of the most abundant antimicrobial proteins in the airspaces of the lung. Mice express two lysozyme genes, lysozyme M and P, but only the M enzyme is detected in abundance in lung tissues. Disruption of the lysozyme M locus significantly increased bacterial burden and mortality following intratracheal infection with a Gram-negative bacterium. Unexpectedly, significant lysozyme enzyme activity (muramidase activity) was detected in the airspaces of uninfected lysozyme M-/- mice, amounting to 25% of the activity in wild-type mice. Muramidase activity in lysozyme M-/- mice was associated with increased lysozyme P mRNA and protein in lung tissue and bronchoalveolar lavage fluid respectively. The muramidase activity of recombinant lysozyme P was less than that of recombinant M lysozyme. Recombinant P lysozyme was also less effective in killing selected Gram-negative bacteria, requiring higher concentrations than lysozyme M to achieve the same level of killing. The lower antimicrobial activity of P lysozyme, coupled with incomplete compensation by P lysozyme in lysozyme M-/- mice, probably accounts for the increased susceptibility of null mice to infection. Recombinant lysozyme M and P were equally effective in killing selected Gram-positive organisms. This outcome suggests that disruption of both M and P loci would significantly increase susceptibility to airway infections, particularly those associated with colonization by Gram-positive organisms.

Full Text

The Full Text of this article is available as a PDF (888.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akinbi H. T., Epaud R., Bhatt H., Weaver T. E. Bacterial killing is enhanced by expression of lysozyme in the lungs of transgenic mice. J Immunol. 2000 Nov 15;165(10):5760–5766. doi: 10.4049/jimmunol.165.10.5760. [DOI] [PubMed] [Google Scholar]
  2. Cortopassi G. A., Wilson A. C. Recent origin of the P lysozyme gene in mice. Nucleic Acids Res. 1990 Apr 11;18(7):1911–1911. doi: 10.1093/nar/18.7.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cross M., Mangelsdorf I., Wedel A., Renkawitz R. Mouse lysozyme M gene: isolation, characterization, and expression studies. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6232–6236. doi: 10.1073/pnas.85.17.6232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Faust N., Varas F., Kelly L. M., Heck S., Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 2000 Jul 15;96(2):719–726. [PubMed] [Google Scholar]
  5. Ganz Tomas, Gabayan Victoria, Liao Hsiang-I, Liu Lide, Oren Ami, Graf Thomas, Cole Alexander M. Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood. 2002 Oct 31;101(6):2388–2392. doi: 10.1182/blood-2002-07-2319. [DOI] [PubMed] [Google Scholar]
  6. Gordon S., Todd J., Cohn Z. A. In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. J Exp Med. 1974 May 1;139(5):1228–1248. doi: 10.1084/jem.139.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haller E. M., Shelley S. A., Montgomery M. R., Balis J. U. Immunocytochemical localization of lysozyme and surfactant protein A in rat type II cells and extracellular surfactant forms. J Histochem Cytochem. 1992 Oct;40(10):1491–1500. doi: 10.1177/40.10.1527372. [DOI] [PubMed] [Google Scholar]
  8. Ibrahim H. R., Matsuzaki T., Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 2001 Sep 28;506(1):27–32. doi: 10.1016/s0014-5793(01)02872-1. [DOI] [PubMed] [Google Scholar]
  9. Ibrahim H. R., Thomas U., Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem. 2001 Sep 17;276(47):43767–43774. doi: 10.1074/jbc.M106317200. [DOI] [PubMed] [Google Scholar]
  10. Ibrahim Hisham R., Aoki Takayoshi, Pellegrini Antonio. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Curr Pharm Des. 2002;8(9):671–693. doi: 10.2174/1381612023395349. [DOI] [PubMed] [Google Scholar]
  11. Laible N. J., Germaine G. R. Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun. 1985 Jun;48(3):720–728. doi: 10.1128/iai.48.3.720-728.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Markart Philipp, Korfhagen Thomas R., Weaver Timothy E., Akinbi Henry T. Mouse lysozyme M is important in pulmonary host defense against Klebsiella pneumoniae infection. Am J Respir Crit Care Med. 2003 Nov 14;169(4):454–458. doi: 10.1164/rccm.200305-669OC. [DOI] [PubMed] [Google Scholar]
  13. Power J. H., Barr H. A., Nicholas T. E. Characterization and immunohistochemical localization of the 15 kD protein isolated from rat lung lamellar bodies. Am J Respir Cell Mol Biol. 1993 Jan;8(1):98–105. doi: 10.1165/ajrcmb/8.1.98. [DOI] [PubMed] [Google Scholar]
  14. Singh G., Katyal S. L., Brown W. E., Collins D. L., Mason R. J. Pulmonary lysozyme--a secretory protein of type II pneumocytes in the rat. Am Rev Respir Dis. 1988 Nov;138(5):1261–1267. doi: 10.1164/ajrccm/138.5.1261. [DOI] [PubMed] [Google Scholar]
  15. Thompson A. B., Bohling T., Payvandi F., Rennard S. I. Lower respiratory tract lactoferrin and lysozyme arise primarily in the airways and are elevated in association with chronic bronchitis. J Lab Clin Med. 1990 Feb;115(2):148–158. [PubMed] [Google Scholar]
  16. Voorhout W. F., Weaver T. E., Haagsman H. P., Geuze H. J., Van Golde L. M. Biosynthetic routing of pulmonary surfactant proteins in alveolar type II cells. Microsc Res Tech. 1993 Dec 1;26(5):366–373. doi: 10.1002/jemt.1070260504. [DOI] [PubMed] [Google Scholar]
  17. Yei S., Bachurski C. J., Weaver T. E., Wert S. E., Trapnell B. C., Whitsett J. A. Adenoviral-mediated gene transfer of human surfactant protein B to respiratory epithelial cells. Am J Respir Cell Mol Biol. 1994 Sep;11(3):329–336. doi: 10.1165/ajrcmb.11.3.8086169. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES