Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):449–454. doi: 10.1042/BJ20031754

Determination of cellular nicotinic acid-adenine dinucleotide phosphate (NAADP) levels.

Dev Churamani 1, Elizabeth A Carrey 1, George D Dickinson 1, Sandip Patel 1
PMCID: PMC1224178  PMID: 14984366

Abstract

Nicotinic acid-adenine dinucleotide phosphate (NAADP) is fast emerging as a new intracellular Ca2+-mobilizing messenger. In sea urchin egg homogenates, binding of NAADP to its receptor is not readily reversible; hence, prior incubation with low concentrations of NAADP is more effective in inhibiting subsequent binding of radiolabelled NAADP than incubating the preparation with the two ligands simultaneously [Patel, Churchill and Galione (2000) Biochem. J. 352, 725-729]. We extend this finding to show that NAADP is more effective still in inhibiting the subsequent radioligand binding at lower homogenate concentrations, an effect again quite probably due to the non-reversible nature of the receptor-ligand interaction. Enhanced sensitivity of the preparation to NAADP afforded by simple manipulation of the experimental conditions has been applied to determine low levels of NAADP in acid extracts from human red blood cells, rat hepatocytes and Escherichia coli without interference from NADP breakdown. Our improved method for the quantification of NAADP should prove useful in the further assessment of its signalling role within cells.

Full Text

The Full Text of this article is available as a PDF (240.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Dickey D. M., Graeff R. M., Gee K. R., Walseth T. F., Lee H. C. Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem. 1996 Apr 12;271(15):8513–8516. doi: 10.1074/jbc.271.15.8513. [DOI] [PubMed] [Google Scholar]
  2. Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Lee H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995 Dec 22;270(51):30327–30333. doi: 10.1074/jbc.270.51.30327. [DOI] [PubMed] [Google Scholar]
  3. Berridge Georgina, Cramer Rainer, Galione Antony, Patel Sandip. Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase. Biochem J. 2002 Jul 1;365(Pt 1):295–301. doi: 10.1042/BJ20020180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge Georgina, Dickinson George, Parrington John, Galione Antony, Patel Sandip. Solubilization of receptors for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate. J Biol Chem. 2002 Sep 9;277(46):43717–43723. doi: 10.1074/jbc.M203224200. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–21. doi: 10.1038/35036035. [DOI] [PubMed] [Google Scholar]
  7. Billington R. A., Genazzani A. A. Characterization of NAADP(+) binding in sea urchin eggs. Biochem Biophys Res Commun. 2000 Sep 16;276(1):112–116. doi: 10.1006/bbrc.2000.3444. [DOI] [PubMed] [Google Scholar]
  8. Billington Richard A., Ho Andrew, Genazzani Armando A. Nicotinic acid adenine dinucleotide phosphate (NAADP) is present at micromolar concentrations in sea urchin spermatozoa. J Physiol. 2002 Oct 1;544(Pt 1):107–112. doi: 10.1113/jphysiol.2002.030098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boittin François-Xavier, Galione Antony, Evans A. Mark. Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ Res. 2002 Dec 13;91(12):1168–1175. doi: 10.1161/01.res.0000047507.22487.85. [DOI] [PubMed] [Google Scholar]
  10. Brailoiu Eugen, Patel Sandip, Dun Nae J. Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca(2+) stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP). Biochem J. 2003 Jul 15;373(Pt 2):313–318. doi: 10.1042/BJ20030472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cancela J. M. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu Rev Physiol. 2001;63:99–117. doi: 10.1146/annurev.physiol.63.1.99. [DOI] [PubMed] [Google Scholar]
  12. Carrey Elizabeth A., Smolenski Ryszard T., Edbury Stephen M., Laurence Arian, Marinaki Anthony M., Duley John A., Zhu Limin, Goldsmith David J. A., Simmonds H. Anne. Origin and characteristics of an unusual pyridine nucleotide accumulating in erythrocytes: positive correlation with degree of renal failure. Clin Chim Acta. 2003 Sep;335(1-2):117–129. doi: 10.1016/s0009-8981(03)00294-8. [DOI] [PubMed] [Google Scholar]
  13. Chini E. N., Beers K. W., Dousa T. P. Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J Biol Chem. 1995 Feb 17;270(7):3216–3223. doi: 10.1074/jbc.270.7.3216. [DOI] [PubMed] [Google Scholar]
  14. Chini E. N., Dousa T. P. Nicotinate-adenine dinucleotide phosphate-induced Ca(2+)-release does not behave as a Ca(2+)-induced Ca(2+)-release system. Biochem J. 1996 Jun 15;316(Pt 3):709–711. doi: 10.1042/bj3160709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chini Eduardo N., Chini Claudia C. S., Kato Ichiro, Takasawa Shin, Okamoto Hiroshi. CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues. Biochem J. 2002 Feb 15;362(Pt 1):125–130. doi: 10.1042/0264-6021:3620125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chini Eduardo N., De Toledo Frederico G. S. Nicotinic acid adenine dinucleotide phosphate: a new intracellular second messenger? Am J Physiol Cell Physiol. 2002 Jun;282(6):C1191–C1198. doi: 10.1152/ajpcell.00475.2001. [DOI] [PubMed] [Google Scholar]
  17. Churchill Grant C., O'Neill John S., Masgrau Roser, Patel Sandip, Thomas Justyn M., Genazzani Armando A., Galione Antony. Sperm deliver a new second messenger: NAADP. Curr Biol. 2003 Jan 21;13(2):125–128. doi: 10.1016/s0960-9822(03)00002-2. [DOI] [PubMed] [Google Scholar]
  18. Churchill Grant C., Okada Yuhei, Thomas Justyn M., Genazzani Armando A., Patel Sandip, Galione Antony. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002 Nov 27;111(5):703–708. doi: 10.1016/s0092-8674(02)01082-6. [DOI] [PubMed] [Google Scholar]
  19. Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
  20. Dickinson George D., Patel Sandip. Modulation of NAADP (nicotinic acid-adenine dinucleotide phosphate) receptors by K+ ions: evidence for multiple NAADP receptor conformations. Biochem J. 2003 Nov 1;375(Pt 3):805–812. doi: 10.1042/BJ20030672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Genazzani A. A., Empson R. M., Galione A. Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem. 1996 May 17;271(20):11599–11602. doi: 10.1074/jbc.271.20.11599. [DOI] [PubMed] [Google Scholar]
  22. Genazzani A. A., Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J. 1996 May 1;315(Pt 3):721–725. doi: 10.1042/bj3150721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Genazzani A. A., Mezna M., Dickey D. M., Michelangeli F., Walseth T. F., Galione A. Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg. Br J Pharmacol. 1997 Aug;121(7):1489–1495. doi: 10.1038/sj.bjp.0701295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Genazzani Armando A., Billington Richard A. NAADP: an atypical Ca2+-release messenger? Trends Pharmacol Sci. 2002 Apr;23(4):165–167. doi: 10.1016/s0165-6147(00)01990-8. [DOI] [PubMed] [Google Scholar]
  25. Graeff Richard, Lee Hon Cheung. A novel cycling assay for nicotinic acid-adenine dinucleotide phosphate with nanomolar sensitivity. Biochem J. 2002 Oct 1;367(Pt 1):163–168. doi: 10.1042/BJ20020644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Guse Andreas H. Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+-signaling and cell function. Curr Mol Med. 2002 May;2(3):273–282. doi: 10.2174/1566524024605707. [DOI] [PubMed] [Google Scholar]
  27. Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
  28. Lee H. C. Enzymatic functions and structures of CD38 and homologs. Chem Immunol. 2000;75:39–59. doi: 10.1159/000058774. [DOI] [PubMed] [Google Scholar]
  29. Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
  30. Masgrau Roser, Churchill Grant C., Morgan Anthony J., Ashcroft Stephen J. H., Galione Antony. NAADP: a new second messenger for glucose-induced Ca2+ responses in clonal pancreatic beta cells. Curr Biol. 2003 Feb 4;13(3):247–251. doi: 10.1016/s0960-9822(03)00041-1. [DOI] [PubMed] [Google Scholar]
  31. Meredith M. J. Rat hepatocytes prepared without collagenase: prolonged retention of differentiated characteristics in culture. Cell Biol Toxicol. 1988 Dec;4(4):405–425. doi: 10.1007/BF00117769. [DOI] [PubMed] [Google Scholar]
  32. Mitchell Kathryn J., Lai F. Anthony, Rutter Guy A. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem. 2003 Jan 21;278(13):11057–11064. doi: 10.1074/jbc.M210257200. [DOI] [PubMed] [Google Scholar]
  33. Miyakawa T., Mizushima A., Hirose K., Yamazawa T., Bezprozvanny I., Kurosaki T., Iino M. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling. EMBO J. 2001 Apr 2;20(7):1674–1680. doi: 10.1093/emboj/20.7.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Patel S., Churchill G. C., Galione A. Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci. 2001 Aug;26(8):482–489. doi: 10.1016/s0968-0004(01)01896-5. [DOI] [PubMed] [Google Scholar]
  35. Patel S., Churchill G. C., Galione A. Unique kinetics of nicotinic acid-adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochem J. 2000 Dec 15;352(Pt 3):725–729. [PMC free article] [PubMed] [Google Scholar]
  36. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  37. Patel Sandip. NAADP on the up in pancreatic beta cells-a sweet message? Bioessays. 2003 May;25(5):430–433. doi: 10.1002/bies.10276. [DOI] [PubMed] [Google Scholar]
  38. Taylor C. W. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):19–33. doi: 10.1016/s0005-2760(98)00122-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES