Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):419–424. doi: 10.1042/BJ20031647

Endogenous 2-oxoacids differentially regulate expression of oxygen sensors.

Clifton Lee Dalgard 1, Huasheng Lu 1, Ahmed Mohyeldin 1, Ajay Verma 1
PMCID: PMC1224179  PMID: 14984367

Abstract

Adaptations to change in oxygen availability are crucial for survival of multi-cellular organisms and are also implicated in several disease states. Such adaptations rely upon gene expression regulated by the heterodimeric transcription factors HIFs (hypoxia-inducible factors). Enzymes that link changes in oxygen tensions with the stability and transcriptional activity of HIFs are considered as oxygen sensors. These enzymes are oxygen-, iron- and 2-oxoglutarate-dependent dioxygenases that hydroxylate key proline and asparagine residues in HIFalpha subunits. The constitutive inhibitory action of these enzymes on HIFs is relieved by hypoxia and by agents that displace iron or 2-oxoglutarate. Two of the enzymes, HPH (HIF prolyl hydroxylase)-1 and HPH-2, are known to be inducible by hypoxia in a HIF-dependent manner. This suggests the existence of a novel feedback loop for adjusting hypoxia-regulated gene expression. We have recently shown that HIF-1alpha stability, HIF-1 nuclear translocation and HIF-mediated gene expression in human glioma cell lines can be stimulated by pyruvate independently of hypoxia. In the present study we show that the endogenous 2-oxoacid oxaloacetate can also activate HIF-mediated gene expression. Pyruvate and oxaloacetate treatment of cells also up-regulates HPH-1 and HPH-2, but not HPH-3 or the HIF asparaginyl hydroxylase FIH-1 (factor inhibiting HIF). Regulation of HIF-1 and the expression of HPH homologue genes can thus be influenced by specific glycolytic and tricarboxylic acid cycle metabolites. These findings may underlie important interactions between oxygen homoeostasis, glycolysis, the tricarboxylic acid cycle and gluconeogenesis.

Full Text

The Full Text of this article is available as a PDF (304.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berra E., Richard D. E., Gothié E., Pouysségur J. HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1alpha degradation. FEBS Lett. 2001 Feb 23;491(1-2):85–90. doi: 10.1016/s0014-5793(01)02159-7. [DOI] [PubMed] [Google Scholar]
  2. Berra Edurne, Benizri Emmanuel, Ginouvès Amandine, Volmat Véronique, Roux Danièle, Pouysségur Jacques. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003 Aug 15;22(16):4082–4090. doi: 10.1093/emboj/cdg392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilton Rebecca L., Booker Grant W. The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem. 2003 Mar;270(5):791–798. doi: 10.1046/j.1432-1033.2003.03446.x. [DOI] [PubMed] [Google Scholar]
  4. Bruick R. K., McKnight S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001 Oct 11;294(5545):1337–1340. doi: 10.1126/science.1066373. [DOI] [PubMed] [Google Scholar]
  5. Chun Yang-Sook, Kim Myung-Suk, Park Jong-Wan. Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci. 2002 Oct;17(5):581–588. doi: 10.3346/jkms.2002.17.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Epstein A. C., Gleadle J. M., McNeill L. A., Hewitson K. S., O'Rourke J., Mole D. R., Mukherji M., Metzen E., Wilson M. I., Dhanda A. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001 Oct 5;107(1):43–54. doi: 10.1016/s0092-8674(01)00507-4. [DOI] [PubMed] [Google Scholar]
  7. Erez Neta, Milyavsky Michael, Eilam Raya, Shats Igor, Goldfinger Naomi, Rotter Varda. Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res. 2003 Dec 15;63(24):8777–8783. [PubMed] [Google Scholar]
  8. Frei Christian, Edgar Bruce A. Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Dev Cell. 2004 Feb;6(2):241–251. doi: 10.1016/s1534-5807(03)00409-x. [DOI] [PubMed] [Google Scholar]
  9. Hirsilä Maija, Koivunen Peppi, Günzler Volkmar, Kivirikko Kari I., Myllyharju Johanna. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem. 2003 Jun 3;278(33):30772–30780. doi: 10.1074/jbc.M304982200. [DOI] [PubMed] [Google Scholar]
  10. Huang Jianhe, Zhao Quan, Mooney Sharon M., Lee Frank S. Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem. 2002 Aug 13;277(42):39792–39800. doi: 10.1074/jbc.M206955200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang L. E., Gu J., Schau M., Bunn H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7987–7992. doi: 10.1073/pnas.95.14.7987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaakkola P., Mole D. R., Tian Y. M., Wilson M. I., Gielbert J., Gaskell S. J., von Kriegsheim A., Hebestreit H. F., Mukherji M., Schofield C. J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001 Apr 5;292(5516):468–472. doi: 10.1126/science.1059796. [DOI] [PubMed] [Google Scholar]
  13. Kallio P. J., Wilson W. J., O'Brien S., Makino Y., Poellinger L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem. 1999 Mar 5;274(10):6519–6525. doi: 10.1074/jbc.274.10.6519. [DOI] [PubMed] [Google Scholar]
  14. Kaule G., Timpl R., Gaill F., Günzler V. Prolyl hydroxylase activity in tissue homogenates of annelids from deep sea hydrothermal vents. Matrix Biol. 1998 Jul;17(3):205–212. doi: 10.1016/s0945-053x(98)90059-2. [DOI] [PubMed] [Google Scholar]
  15. Lando David, Peet Daniel J., Gorman Jeffrey J., Whelan Dean A., Whitelaw Murray L., Bruick Richard K. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002 Jun 15;16(12):1466–1471. doi: 10.1101/gad.991402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lieb Mark E., Menzies Keon, Moschella Maria C., Ni Rujing, Taubman Mark B. Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem Cell Biol. 2002;80(4):421–426. doi: 10.1139/o02-115. [DOI] [PubMed] [Google Scholar]
  17. Lu Huasheng, Forbes Robert A., Verma Ajay. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002 Apr 9;277(26):23111–23115. doi: 10.1074/jbc.M202487200. [DOI] [PubMed] [Google Scholar]
  18. Mahon P. C., Hirota K., Semenza G. L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001 Oct 15;15(20):2675–2686. doi: 10.1101/gad.924501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maxwell P. H., Wiesener M. S., Chang G. W., Clifford S. C., Vaux E. C., Cockman M. E., Wykoff C. C., Pugh C. W., Maher E. R., Ratcliffe P. J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999 May 20;399(6733):271–275. doi: 10.1038/20459. [DOI] [PubMed] [Google Scholar]
  20. McNeill Luke A., Hewitson Kirsty S., Claridge Timothy D., Seibel Jürgen F., Horsfall Louise E., Schofield Christopher J. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J. 2002 Nov 1;367(Pt 3):571–575. doi: 10.1042/BJ20021162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Metzen Eric, Berchner-Pfannschmidt Utta, Stengel Petra, Marxsen Jan H., Stolze Ineke, Klinger Matthias, Huang Wei Qi, Wotzlaw Christoph, Hellwig-Bürgel Thomas, Jelkmann Wolfgang. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci. 2003 Apr 1;116(Pt 7):1319–1326. doi: 10.1242/jcs.00318. [DOI] [PubMed] [Google Scholar]
  22. Metzen Eric, Zhou Jie, Jelkmann Wolfgang, Fandrey Joachim, Brüne Bernhard. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell. 2003 May 3;14(8):3470–3481. doi: 10.1091/mbc.E02-12-0791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Minchenko Alexander, Leshchinsky Irene, Opentanova Irina, Sang Nianli, Srinivas Vickram, Armstead Valerie, Caro Jaime. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2001 Dec 14;277(8):6183–6187. doi: 10.1074/jbc.M110978200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Naranjo-Suárez Salvador, Castellanos María Carmen, Alvarez-Tejado Miguel, Vara Alicia, Landázuri Manuel O., del Peso Luis. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation. J Biol Chem. 2003 Jun 12;278(34):31895–31901. doi: 10.1074/jbc.M304079200. [DOI] [PubMed] [Google Scholar]
  25. Ng S. F., Hanauske-Abel H. M., Englard S. Cosubstrate binding site of Pseudomonas sp. AK1 gamma-butyrobetaine hydroxylase. Interactions with structural analogs of alpha-ketoglutarate. J Biol Chem. 1991 Jan 25;266(3):1526–1533. [PubMed] [Google Scholar]
  26. Oehme Felix, Ellinghaus Peter, Kolkhof Peter, Smith Timothy J., Ramakrishnan Shyam, Hütter Joachim, Schramm Matthias, Flamme Ingo. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun. 2002 Aug 16;296(2):343–349. doi: 10.1016/s0006-291x(02)00862-8. [DOI] [PubMed] [Google Scholar]
  27. Sang Nianli, Fang Jie, Srinivas Vickram, Leshchinsky Irene, Caro Jaime. Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol Cell Biol. 2002 May;22(9):2984–2992. doi: 10.1128/MCB.22.9.2984-2992.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seagroves T. N., Ryan H. E., Lu H., Wouters B. G., Knapp M., Thibault P., Laderoute K., Johnson R. S. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001 May;21(10):3436–3444. doi: 10.1128/MCB.21.10.3436-3444.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Semenza G. L., Roth P. H., Fang H. M., Wang G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994 Sep 23;269(38):23757–23763. [PubMed] [Google Scholar]
  30. Semenza Gregg L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003 Oct;3(10):721–732. doi: 10.1038/nrc1187. [DOI] [PubMed] [Google Scholar]
  31. Wang G. L., Semenza G. L. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995 Jan 20;270(3):1230–1237. doi: 10.1074/jbc.270.3.1230. [DOI] [PubMed] [Google Scholar]
  32. del Peso Luis, Castellanos Maria C., Temes Elisa, Martin-Puig Silvia, Cuevas Yolanda, Olmos Gemma, Landazuri Manuel O. The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J Biol Chem. 2003 Sep 23;278(49):48690–48695. doi: 10.1074/jbc.M308862200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES