Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):523–531. doi: 10.1042/BJ20040262

Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control.

William J Sullivan Jr 1, Jana Narasimhan 1, Micah M Bhatti 1, Ronald C Wek 1
PMCID: PMC1224182  PMID: 14989696

Abstract

The ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts.

Full Text

The Full Text of this article is available as a PDF (870.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breman J. G. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg. 2001 Jan-Feb;64(1-2):1–11. doi: 10.4269/ajtmh.2001.64.1. [DOI] [PubMed] [Google Scholar]
  2. Dever T. E. Using GCN4 as a reporter of eIF2 alpha phosphorylation and translational regulation in yeast. Methods. 1997 Apr;11(4):403–417. doi: 10.1006/meth.1996.0437. [DOI] [PubMed] [Google Scholar]
  3. Dhaliwal Simrit, Hoffman David W. The crystal structure of the N-terminal region of the alpha subunit of translation initiation factor 2 (eIF2alpha) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2alpha-specific kinases. J Mol Biol. 2003 Nov 21;334(2):187–195. doi: 10.1016/j.jmb.2003.09.045. [DOI] [PubMed] [Google Scholar]
  4. Fang Rui, Xiong Yanhua, Singleton Charles K. IfkA, a presumptive eIF2 alpha kinase of Dictyostelium, is required for proper timing of aggregation and regulation of mound size. BMC Dev Biol. 2003 Apr 9;3:3–3. doi: 10.1186/1471-213X-3-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garcia-Barrio M., Dong J., Ufano S., Hinnebusch A. G. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J. 2000 Apr 17;19(8):1887–1899. doi: 10.1093/emboj/19.8.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harding H. P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M., Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000 Nov;6(5):1099–1108. doi: 10.1016/s1097-2765(00)00108-8. [DOI] [PubMed] [Google Scholar]
  7. Harding H. P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999 Jan 21;397(6716):271–274. doi: 10.1038/16729. [DOI] [PubMed] [Google Scholar]
  8. Harding Heather P., Calfon Marcella, Urano Fumihiko, Novoa Isabel, Ron David. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002 Apr 2;18:575–599. doi: 10.1146/annurev.cellbio.18.011402.160624. [DOI] [PubMed] [Google Scholar]
  9. Harding Heather P., Zhang Yuhong, Zeng Huiquing, Novoa Isabel, Lu Phoebe D., Calfon Marcella, Sadri Navid, Yun Chi, Popko Brian, Paules Richard. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003 Mar;11(3):619–633. doi: 10.1016/s1097-2765(03)00105-9. [DOI] [PubMed] [Google Scholar]
  10. Hettmann C., Soldati D. Cloning and analysis of a Toxoplasma gondii histone acetyltransferase: a novel chromatin remodelling factor in Apicomplexan parasites. Nucleic Acids Res. 1999 Nov 15;27(22):4344–4352. doi: 10.1093/nar/27.22.4344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hinnebusch A. G. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem. 1997 Aug 29;272(35):21661–21664. doi: 10.1074/jbc.272.35.21661. [DOI] [PubMed] [Google Scholar]
  12. Hinnebusch Alan G., Natarajan Krishnamurthy. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 2002 Feb;1(1):22–32. doi: 10.1128/EC.01.1.22-32.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffmann B., Wanke C., Lapaglia S. K., Braus G. H. c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Mol Microbiol. 2000 Jul;37(1):28–41. doi: 10.1046/j.1365-2958.2000.01954.x. [DOI] [PubMed] [Google Scholar]
  14. Jiang Hao-Yuan, Wek Sheree A., McGrath Barbara C., Lu Dan, Hai Tsonwin, Harding Heather P., Wang Xiaozhong, Ron David, Cavener Douglas R., Wek Ronald C. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol. 2004 Feb;24(3):1365–1377. doi: 10.1128/MCB.24.3.1365-1377.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimball S. R., Fabian J. R., Pavitt G. D., Hinnebusch A. G., Jefferson L. S. Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha- and delta-subunits of eiF2b. J Biol Chem. 1998 May 22;273(21):12841–12845. doi: 10.1074/jbc.273.21.12841. [DOI] [PubMed] [Google Scholar]
  16. Kimball S. R., Heinzinger N. K., Horetsky R. L., Jefferson L. S. Identification of interprotein interactions between the subunits of eukaryotic initiation factors eIF2 and eIF2B. J Biol Chem. 1998 Jan 30;273(5):3039–3044. doi: 10.1074/jbc.273.5.3039. [DOI] [PubMed] [Google Scholar]
  17. Kissinger Jessica C., Gajria Bindu, Li Li, Paulsen Ian T., Roos David S. ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res. 2003 Jan 1;31(1):234–236. doi: 10.1093/nar/gkg072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  19. Kuo M. H., vom Baur E., Struhl K., Allis C. D. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell. 2000 Dec;6(6):1309–1320. doi: 10.1016/s1097-2765(00)00129-5. [DOI] [PubMed] [Google Scholar]
  20. Marton M. J., Crouch D., Hinnebusch A. G. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol. 1993 Jun;13(6):3541–3556. doi: 10.1128/mcb.13.6.3541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morrissette Naomi S., Sibley L. David. Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci. 2002 Mar 1;115(Pt 5):1017–1025. doi: 10.1242/jcs.115.5.1017. [DOI] [PubMed] [Google Scholar]
  22. Möhrle J. J., Zhao Y., Wernli B., Franklin R. M., Kappes B. Molecular cloning, characterization and localization of PfPK4, an eIF-2alpha kinase-related enzyme from the malarial parasite Plasmodium falciparum. Biochem J. 1997 Dec 1;328(Pt 2):677–687. doi: 10.1042/bj3280677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nonato M. Cristina, Widom Joanne, Clardy Jon. Crystal structure of the N-terminal segment of human eukaryotic translation initiation factor 2alpha. J Biol Chem. 2002 Feb 21;277(19):17057–17061. doi: 10.1074/jbc.M111804200. [DOI] [PubMed] [Google Scholar]
  24. Pavitt G. D., Ramaiah K. V., Kimball S. R., Hinnebusch A. G. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev. 1998 Feb 15;12(4):514–526. doi: 10.1101/gad.12.4.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Romano P. R., Garcia-Barrio M. T., Zhang X., Wang Q., Taylor D. R., Zhang F., Herring C., Mathews M. B., Qin J., Hinnebusch A. G. Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2. Mol Cell Biol. 1998 Apr;18(4):2282–2297. doi: 10.1128/mcb.18.4.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roos D. S., Crawford M. J., Donald R. G., Fohl L. M., Hager K. M., Kissinger J. C., Reynolds M. G., Striepen B., Sullivan W. J., Jr Transport and trafficking: Toxoplasma as a model for Plasmodium. Novartis Found Symp. 1999;226:176–198. doi: 10.1002/9780470515730.ch13. [DOI] [PubMed] [Google Scholar]
  27. Roos D. S., Donald R. G., Morrissette N. S., Moulton A. L. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 1994;45:27–63. doi: 10.1016/s0091-679x(08)61845-2. [DOI] [PubMed] [Google Scholar]
  28. Roos D. S., Sullivan W. J., Striepen B., Bohne W., Donald R. G. Tagging genes and trapping promoters in Toxoplasma gondii by insertional mutagenesis. Methods. 1997 Oct;13(2):112–122. doi: 10.1006/meth.1997.0504. [DOI] [PubMed] [Google Scholar]
  29. Sattlegger E., Hinnebusch A. G. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. EMBO J. 2000 Dec 1;19(23):6622–6633. doi: 10.1093/emboj/19.23.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shi Y., Vattem K. M., Sood R., An J., Liang J., Stramm L., Wek R. C. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol. 1998 Dec;18(12):7499–7509. doi: 10.1128/mcb.18.12.7499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sood R., Porter A. C., Ma K., Quilliam L. A., Wek R. C. Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J. 2000 Mar 1;346(Pt 2):281–293. [PMC free article] [PubMed] [Google Scholar]
  32. Soête M., Camus D., Dubremetz J. F. Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Exp Parasitol. 1994 Jun;78(4):361–370. doi: 10.1006/expr.1994.1039. [DOI] [PubMed] [Google Scholar]
  33. Sullivan W. J., Jr, Smith C. K., 2nd Cloning and characterization of a novel histone acetyltransferase homologue from the protozoan parasite Toxoplasma gondii reveals a distinct GCN5 family member. Gene. 2000 Jan 25;242(1-2):193–200. doi: 10.1016/s0378-1119(99)00526-0. [DOI] [PubMed] [Google Scholar]
  34. Vattem K. M., Staschke K. A., Wek R. C. Mechanism of activation of the double-stranded-RNA-dependent protein kinase, PKR: role of dimerization and cellular localization in the stimulation of PKR phosphorylation of eukaryotic initiation factor-2 (eIF2). Eur J Biochem. 2001 Jul;268(13):3674–3684. doi: 10.1046/j.1432-1327.2001.02273.x. [DOI] [PubMed] [Google Scholar]
  35. Vazquez de Aldana C. R., Dever T. E., Hinnebusch A. G. Mutations in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) that overcome the inhibitory effect of eIF-2 alpha phosphorylation on translation initiation. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7215–7219. doi: 10.1073/pnas.90.15.7215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wastling J., Heap S., Ferguson D. Toxoplasma gondii--keeping our guests under control. Biologist (London) 2000 Nov;47(5):234–238. [PubMed] [Google Scholar]
  37. Weiss L. M., Kim K. The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci. 2000 Apr 1;5:D391–D405. doi: 10.2741/weiss. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weiss L. M., Ma Y. F., Takvorian P. M., Tanowitz H. B., Wittner M. Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect Immun. 1998 Jul;66(7):3295–3302. doi: 10.1128/iai.66.7.3295-3302.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yoon Sungpil, Qiu Hongfang, Swanson Mark J., Hinnebusch Alan G. Recruitment of SWI/SNF by Gcn4p does not require Snf2p or Gcn5p but depends strongly on SWI/SNF integrity, SRB mediator, and SAGA. Mol Cell Biol. 2003 Dec;23(23):8829–8845. doi: 10.1128/MCB.23.23.8829-9945.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhan Ke, Vattem Krishna M., Bauer Bettina N., Dever Thomas E., Chen Jane-Jane, Wek Ronald C. Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for fesistance to environmental stresses. Mol Cell Biol. 2002 Oct;22(20):7134–7146. doi: 10.1128/MCB.22.20.7134-7146.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES