Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):487–496. doi: 10.1042/BJ20031921

The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure-function relationships.

Scott Severance 1, Satadipta Chakraborty 1, Daniel J Kosman 1
PMCID: PMC1224186  PMID: 14992688

Abstract

Ftr1p is the permease component of the Fet3p-Ftr1p high affinity iron-uptake complex, in the plasma membrane of Saccharomyces cerevisiae, that transports the Fe3+ produced by the Fet3p ferroxidase into the cell. In this study we show that Ftr1p probably has seven transmembrane domains with an orientation of N-terminal outside, and C-terminal inside the cell. Within the context of this topology of the Fet3p-Ftr1p complex, we have identified several sequence elements in Ftr1p that are required for wild-type uptake function. First to be identified were two REXLE (Arg-Glu-Xaa-Leu-Glu) motifs in transmembrane domains 1 and 4. Alanine substitutions at any one of these combined six arginine or glutamic acid residues inactivated Ftr1p in iron uptake, indicating that both motifs were essential to iron permeation. R-->K and E-->D substitutions in these two motifs led to a variable loss of activity, suggesting that while all six residues were essential, their contributions to uptake were quantitatively and/or mechanistically distinct. The terminal glutamate in an EDLWE89 element, associated with transmembrane domain 3, and a DASE motif, located in extracellular loop 6, were also required. The double substitution to AASA in the latter, inactivated Ftr1p in iron uptake while the Ftr1p(E89A) mutant had only 20% of wild-type activity. The two REXLE and the EDLWE and DASE motifs are strongly conserved among fungal Ftr1p homologues, suggesting that these motifs are essential to iron permeation. Finally another important residue, Ile369, was identified in the Ftr1p cytoplasmic C-terminal domain. Deletion or substitution of this residue led to a 70% loss of iron-uptake activity. Ile369 was the only residue identified in this domain that made such a major contribution to iron uptake by the Fet3p-Ftr1p complex.

Full Text

The Full Text of this article is available as a PDF (544.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. S. Fundamental mechanisms of substrate channeling. Methods Enzymol. 1999;308:111–145. doi: 10.1016/s0076-6879(99)08008-8. [DOI] [PubMed] [Google Scholar]
  2. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  3. Askwith C., Kaplan J. An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem. 1997 Jan 3;272(1):401–405. doi: 10.1074/jbc.272.1.401. [DOI] [PubMed] [Google Scholar]
  4. Cormack B. P., Bertram G., Egerton M., Gow N. A., Falkow S., Brown A. J. Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology. 1997 Feb;143(Pt 2):303–311. doi: 10.1099/00221287-143-2-303. [DOI] [PubMed] [Google Scholar]
  5. Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Silva D. M., Askwith C. C., Eide D., Kaplan J. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem. 1995 Jan 20;270(3):1098–1101. doi: 10.1074/jbc.270.3.1098. [DOI] [PubMed] [Google Scholar]
  7. Dix D. R., Bridgham J. T., Broderius M. A., Byersdorfer C. A., Eide D. J. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem. 1994 Oct 21;269(42):26092–26099. [PubMed] [Google Scholar]
  8. Dix D., Bridgham J., Broderius M., Eide D. Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem. 1997 May 2;272(18):11770–11777. doi: 10.1074/jbc.272.18.11770. [DOI] [PubMed] [Google Scholar]
  9. Drew David, Sjöstrand Dan, Nilsson Johan, Urbig Thomas, Chin Chen-ni, de Gier Jan-Willem, von Heijne Gunnar. Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):2690–2695. doi: 10.1073/pnas.052018199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eck R., Hundt S., Härtl A., Roemer E., Künkel W. A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology. 1999 Sep;145(Pt 9):2415–2422. doi: 10.1099/00221287-145-9-2415. [DOI] [PubMed] [Google Scholar]
  11. Fang Hao-Ming, Wang Yue. Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis. Biochem J. 2002 Dec 1;368(Pt 2):641–647. doi: 10.1042/BJ20021005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frieden E., Osaki S. Ferroxidases and ferrireductases: their role in iron metabolism. Adv Exp Med Biol. 1974;48(0):235–265. doi: 10.1007/978-1-4684-0943-7_12. [DOI] [PubMed] [Google Scholar]
  13. Goder Veit, Spiess Martin. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J. 2003 Jul 15;22(14):3645–3653. doi: 10.1093/emboj/cdg361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartmann E., Rapoport T. A., Lodish H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5786–5790. doi: 10.1073/pnas.86.15.5786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hassett R. F., Yuan D. S., Kosman D. J. Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae, a multinuclear copper ferroxidase enzyme. J Biol Chem. 1998 Sep 4;273(36):23274–23282. doi: 10.1074/jbc.273.36.23274. [DOI] [PubMed] [Google Scholar]
  16. Hassett R., Kosman D. J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem. 1995 Jan 6;270(1):128–134. doi: 10.1074/jbc.270.1.128. [DOI] [PubMed] [Google Scholar]
  17. Heijne G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 1986 Nov;5(11):3021–3027. doi: 10.1002/j.1460-2075.1986.tb04601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huffman D. L., O'Halloran T. V. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem. 2001;70:677–701. doi: 10.1146/annurev.biochem.70.1.677. [DOI] [PubMed] [Google Scholar]
  19. Klomp Adriana E. M., Juijn Jenneke A., van der Gun Linda T. M., van den Berg Inge E. T., Berger Ruud, Klomp Leo W. J. The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem J. 2003 Mar 15;370(Pt 3):881–889. doi: 10.1042/BJ20021128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knight Simon A. B., Lesuisse Emmanuel, Stearman Robert, Klausner Richard D., Dancis Andrew. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology. 2002 Jan;148(Pt 1):29–40. doi: 10.1099/00221287-148-1-29. [DOI] [PubMed] [Google Scholar]
  21. Kosman Daniel J. Molecular mechanisms of iron uptake in fungi. Mol Microbiol. 2003 Mar;47(5):1185–1197. doi: 10.1046/j.1365-2958.2003.03368.x. [DOI] [PubMed] [Google Scholar]
  22. Morrissey J. A., Williams P. H., Cashmore A. M. Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology. 1996 Mar;142(Pt 3):485–492. doi: 10.1099/13500872-142-3-485. [DOI] [PubMed] [Google Scholar]
  23. Nilsson J., Persson B., von Heijne G. Consensus predictions of membrane protein topology. FEBS Lett. 2000 Dec 15;486(3):267–269. doi: 10.1016/s0014-5793(00)02321-8. [DOI] [PubMed] [Google Scholar]
  24. Overton Mark C., Blumer Kendall J. Use of fluorescence resonance energy transfer to analyze oligomerization of G-protein-coupled receptors expressed in yeast. Methods. 2002 Aug;27(4):324–332. doi: 10.1016/s1046-2023(02)00090-7. [DOI] [PubMed] [Google Scholar]
  25. Ramanan N., Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science. 2000 May 12;288(5468):1062–1064. doi: 10.1126/science.288.5468.1062. [DOI] [PubMed] [Google Scholar]
  26. Rosenzweig A. C. Copper delivery by metallochaperone proteins. Acc Chem Res. 2001 Feb;34(2):119–128. doi: 10.1021/ar000012p. [DOI] [PubMed] [Google Scholar]
  27. Santambrogio P., Levi S., Cozzi A., Corsi B., Arosio P. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J. 1996 Feb 15;314(Pt 1):139–144. doi: 10.1042/bj3140139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Solomon Edward I., Sundaram Uma M., Machonkin Timothy E. Multicopper Oxidases and Oxygenases. Chem Rev. 1996 Nov 7;96(7):2563–2606. doi: 10.1021/cr950046o. [DOI] [PubMed] [Google Scholar]
  30. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  31. Treffry A., Bauminger E. R., Hechel D., Hodson N. W., Nowik I., Yewdall S. J., Harrison P. M. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Biochem J. 1993 Dec 15;296(Pt 3):721–728. doi: 10.1042/bj2960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Urbanowski J. L., Piper R. C. The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem. 1999 Dec 31;274(53):38061–38070. doi: 10.1074/jbc.274.53.38061. [DOI] [PubMed] [Google Scholar]
  33. Wang Tzu-Pin, Quintanar Liliana, Severance Scott, Solomon Edward I., Kosman Daniel J. Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae. J Biol Inorg Chem. 2003 Apr 9;8(6):611–620. doi: 10.1007/s00775-003-0456-5. [DOI] [PubMed] [Google Scholar]
  34. Yuan D. S., Dancis A., Klausner R. D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem. 1997 Oct 10;272(41):25787–25793. doi: 10.1074/jbc.272.41.25787. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES