Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):393–400. doi: 10.1042/BJ20040042

Dual targeting of yeast catalase A to peroxisomes and mitochondria.

Ventsislava Y Petrova 1, Diane Drescher 1, Anna V Kujumdzieva 1, Manfred J Schmitt 1
PMCID: PMC1224190  PMID: 14998369

Abstract

Yeast catalase A (Cta1p) contains two peroxisomal targeting signals (SSNSKF) localized at its C-terminus and within the N-terminal third of the protein, which both can target foreign proteins to peroxisomes. In the present study we demonstrated that Cta1p can also enter mitochondria, although the enzyme lacks a classical mitochondrial import sequence. Cta1p co-targeting was studied in a catalase A null mutant after growth on different carbon sources, and expression of a Cta1p-GFP (green fluorescent protein)-fusion protein or a Cta1p derivative containing either a c-Myc epitope (Cta1p(myc)) or a SKF-extended tag (Cta1p(myc-SKF)). Peroxisomal and mitochondrial co-import of catalase A were tested qualitatively by fluorescence microscopy and functional complementation of a Delta cta1 null mutation, and quantitatively by subcellular fractionation followed by Western blot analysis and enzyme activity assays. Efficient Cta1p import into peroxisomes was observed when cells were cultivated under peroxisome-inducing conditions (i.e. growth on oleate), whereas significant co-import of Cta1p-GFP into mitochondria occurred when cells were grown under respiratory conditions that favour oxygen stress and ROS (reactive oxygen species) accumulation within this organelle. In particular, when cells were grown on the non-fermentable carbon source raffinose, respiration is maximally enhanced, and catalase A was efficiently targeted to the mitochondrial matrix where it presumably functions as scavenger of H2O2 and mitochondrial-derived ROS.

Full Text

The Full Text of this article is available as a PDF (317.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarraberes F. A., Dice J. F. Protein translocation across membranes. Biochim Biophys Acta. 2001 Jul 2;1513(1):1–24. doi: 10.1016/s0304-4157(01)00005-3. [DOI] [PubMed] [Google Scholar]
  2. BERGMEYER H. U. Zur Messung von Katalase-Aktivitäten. Biochem Z. 1955;327(4):255–258. [PubMed] [Google Scholar]
  3. Baird G. S., Zacharias D. A., Tsien R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11984–11989. doi: 10.1073/pnas.97.22.11984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breinig Frank, Tipper Donald J., Schmitt Manfred J. Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell. 2002 Feb 8;108(3):395–405. doi: 10.1016/s0092-8674(02)00634-7. [DOI] [PubMed] [Google Scholar]
  5. Charizanis C., Juhnke H., Krems B., Entian K. D. The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet. 1999 Oct;262(3):437–447. doi: 10.1007/s004380051103. [DOI] [PubMed] [Google Scholar]
  6. Donzeau M., Káldi K., Adam A., Paschen S., Wanner G., Guiard B., Bauer M. F., Neupert W., Brunner M. Tim23 links the inner and outer mitochondrial membranes. Cell. 2000 May 12;101(4):401–412. doi: 10.1016/s0092-8674(00)80850-8. [DOI] [PubMed] [Google Scholar]
  7. Eisfeld K., Riffer F., Mentges J., Schmitt M. J. Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol. 2000 Aug;37(4):926–940. doi: 10.1046/j.1365-2958.2000.02063.x. [DOI] [PubMed] [Google Scholar]
  8. Elgersma Y., Vos A., van den Berg M., van Roermund C. W., van der Sluijs P., Distel B., Tabak H. F. Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem. 1996 Oct 18;271(42):26375–26382. doi: 10.1074/jbc.271.42.26375. [DOI] [PubMed] [Google Scholar]
  9. Elgersma Y., van Roermund C. W., Wanders R. J., Tabak H. F. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 1995 Jul 17;14(14):3472–3479. doi: 10.1002/j.1460-2075.1995.tb07353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Endo Toshiya, Kohda Daisuke. Functions of outer membrane receptors in mitochondrial protein import. Biochim Biophys Acta. 2002 Sep 2;1592(1):3–14. doi: 10.1016/s0167-4889(02)00259-8. [DOI] [PubMed] [Google Scholar]
  11. Horiguchi H., Yurimoto H., Goh T., Nakagawa T., Kato N., Sakai Y. Peroxisomal catalase in the methylotrophic yeast Candida boidinii: transport efficiency and metabolic significance. J Bacteriol. 2001 Nov;183(21):6372–6383. doi: 10.1128/JB.183.21.6372-6383.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
  13. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Izawa S., Inoue Y., Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J. 1996 Nov 15;320(Pt 1):61–67. doi: 10.1042/bj3200061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jamieson D. J. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 1998 Dec;14(16):1511–1527. doi: 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  16. Kragler F., Langeder A., Raupachova J., Binder M., Hartig A. Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae. J Cell Biol. 1993 Feb;120(3):665–673. doi: 10.1083/jcb.120.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kunau W. H., Hartig A. Peroxisome biogenesis in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek. 1992 Aug;62(1-2):63–78. doi: 10.1007/BF00584463. [DOI] [PubMed] [Google Scholar]
  18. Lapinskas P., Ruis H., Culotta V. Regulation of Saccharomyces cerevisiae catalase gene expression by copper. Curr Genet. 1993 Nov;24(5):388–393. doi: 10.1007/BF00351846. [DOI] [PubMed] [Google Scholar]
  19. Lee J. G., Cho S. P., Lee H. S., Lee C. H., Bae K. S., Maeng P. J. Identification of a cryptic N-terminal signal in Saccharomyces cerevisiae peroxisomal citrate synthase that functions in both peroxisomal and mitochondrial targeting. J Biochem. 2000 Dec;128(6):1059–1072. doi: 10.1093/oxfordjournals.jbchem.a022834. [DOI] [PubMed] [Google Scholar]
  20. Pedrajas J. R., Miranda-Vizuete A., Javanmardy N., Gustafsson J. A., Spyrou G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem. 2000 May 26;275(21):16296–16301. doi: 10.1074/jbc.275.21.16296. [DOI] [PubMed] [Google Scholar]
  21. Radi R., Turrens J. F., Chang L. Y., Bush K. M., Crapo J. D., Freeman B. A. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991 Nov 15;266(32):22028–22034. [PubMed] [Google Scholar]
  22. Riffer Frank, Eisfeld Katrin, Breinig Frank, Schmitt Manfred J. Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology. 2002 May;148(Pt 5):1317–1328. doi: 10.1099/00221287-148-5-1317. [DOI] [PubMed] [Google Scholar]
  23. Rosenkrantz M., Alam T., Kim K. S., Clark B. J., Srere P. A., Guarente L. P. Mitochondrial and nonmitochondrial citrate synthases in Saccharomyces cerevisiae are encoded by distinct homologous genes. Mol Cell Biol. 1986 Dec;6(12):4509–4515. doi: 10.1128/mcb.6.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scandalios John G. The rise of ROS. Trends Biochem Sci. 2002 Sep;27(9):483–486. doi: 10.1016/s0968-0004(02)02170-9. [DOI] [PubMed] [Google Scholar]
  25. Scherer Mario, Wei Huijun, Liese Ralf, Fischer Reinhard. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryot Cell. 2002 Oct;1(5):725–735. doi: 10.1128/EC.1.5.725-735.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmitt M. J., Tipper D. J. Sequence of the M28 dsRNA: preprotoxin is processed to an alpha/beta heterodimeric protein toxin. Virology. 1995 Nov 10;213(2):341–351. doi: 10.1006/viro.1995.0007. [DOI] [PubMed] [Google Scholar]
  27. Seah T. C., Bhatti A. R., Kaplan J. G. Novel catalatic proteins of bakers' yeast. I. An atypical catalase. Can J Biochem. 1973 Nov;51(11):1551–1555. doi: 10.1139/o73-208. [DOI] [PubMed] [Google Scholar]
  28. Seah T. C., Kaplan J. G. Purification and properties of the catalase of bakers' yeast. J Biol Chem. 1973 Apr 25;248(8):2889–2893. [PubMed] [Google Scholar]
  29. Skoneczny M., Rytka J. Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem J. 2000 Aug 15;350(Pt 1):313–319. [PMC free article] [PubMed] [Google Scholar]
  30. Sturtz L. A., Diekert K., Jensen L. T., Lill R., Culotta V. C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 2001 Aug 10;276(41):38084–38089. doi: 10.1074/jbc.M105296200. [DOI] [PubMed] [Google Scholar]
  31. Taylor Steven W., Fahy Eoin, Zhang Bing, Glenn Gary M., Warnock Dale E., Wiley Sandra, Murphy Anne N., Gaucher Sara P., Capaldi Roderick A., Gibson Bradford W. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003 Feb 18;21(3):281–286. doi: 10.1038/nbt793. [DOI] [PubMed] [Google Scholar]
  32. Thieringer R., Shio H., Han Y. S., Cohen G., Lazarow P. B. Peroxisomes in Saccharomyces cerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes. Mol Cell Biol. 1991 Jan;11(1):510–522. doi: 10.1128/mcb.11.1.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Traczyk A., Biliński T., Litwińska J., Skoneczny M., Rytka J. Catalase T deficient mutants of Saccharomyces cerevisiae. Acta Microbiol Pol. 1985;34(3-4):231–241. [PubMed] [Google Scholar]
  34. Truscott Kaye N., Brandner Katrin, Pfanner Nikolaus. Mechanisms of protein import into mitochondria. Curr Biol. 2003 Apr 15;13(8):R326–R337. doi: 10.1016/s0960-9822(03)00239-2. [DOI] [PubMed] [Google Scholar]
  35. Turko Illarion V., Murad Ferid. Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem. 2003 Jul 7;278(37):35844–35849. doi: 10.1074/jbc.M303139200. [DOI] [PubMed] [Google Scholar]
  36. Verduyn C., Giuseppin M. L., Scheffers W. A., van Dijken J. P. Hydrogen peroxide metabolism in yeasts. Appl Environ Microbiol. 1988 Aug;54(8):2086–2090. doi: 10.1128/aem.54.8.2086-2090.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zinser E., Daum G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast. 1995 May;11(6):493–536. doi: 10.1002/yea.320110602. [DOI] [PubMed] [Google Scholar]
  38. Zwart K., Veenhuis M., van Dijken J. P., Harder W. Development of amine oxidase-containing peroxisomes in yeasts during growth on glucose in the presence of methylamine as the sole source of nitrogen. Arch Microbiol. 1980 Jun;126(2):117–126. doi: 10.1007/BF00511216. [DOI] [PubMed] [Google Scholar]
  39. de Hoop M. J., Holtman W. L., Ab G. Human catalase is imported and assembled in peroxisomes of Saccharomyces cerevisiae. Yeast. 1993 Jan;9(1):59–69. doi: 10.1002/yea.320090108. [DOI] [PubMed] [Google Scholar]
  40. del Río Luis A., Sandalio Luisa M., Altomare Deborah A., Zilinskas Barbara A. Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot. 2003 Mar;54(384):923–933. doi: 10.1093/jxb/erg091. [DOI] [PubMed] [Google Scholar]
  41. van der Klei Ida, Veenhuis Marten. Peroxisomes: flexible and dynamic organelles. Curr Opin Cell Biol. 2002 Aug;14(4):500–505. doi: 10.1016/s0955-0674(02)00354-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES