Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 1;380(Pt 2):571–579. doi: 10.1042/BJ20040010

Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha- and beta-subunits in scrapie-infected neuroblastoma N2a cells.

Daniel Nielsen 1, Hanna Gyllberg 1, Pernilla Ostlund 1, Tomas Bergman 1, Katarina Bedecs 1
PMCID: PMC1224193  PMID: 15025560

Abstract

We have previously shown that ScN2a cells (scrapie-infected neuroblastoma N2a cells) express 2-fold- and 4-fold-increased levels of IR (insulin receptor) and IGF-1R (insulin-like growth factor-1 receptor) respectively. In addition, the IR alpha- and beta-subunits are aberrantly processed, with apparent molecular masses of 128 and 85 kDa respectively, as compared with 136 and 95 kDa in uninfected N2a cells. Despite the 2-fold increase in IR protein, the number of (125)I-insulin-binding sites was slightly decreased in ScN2a cells [Ostlund, Lindegren, Pettersson and Bedecs (2001) Brain Res. 97, 161-170]. In order to determine the cellular localization of IR in ScN2a cells, surface biotinylation was performed, showing a correct IR trafficking and localization to the cell surface. The present study shows for the first time that neuroblastoma N2a cells express significant levels of IR-IGF-1R hybrid receptors, and in ScN2a cells the number of hybrid receptors was 2-fold higher than that found in N2a cells, potentially explaining the apparent loss of insulin-binding sites due to a lower affinity for insulin compared with the homotypic IR. Furthermore, the decreased molecular mass of IR subunits in ScN2a cells is not caused by altered phosphorylation or proteolytic processing, but rather by altered glycosylation. Enzymic deglycosylation of immunoprecipitated IR from N2a and ScN2a cells with endoglycosidase H, peptide N-glycosidase F and neuraminidase all resulted in subunits with increased electrophoretic mobility; however, the 8-10 kDa shift remained. Combined enzymic or chemical deglycosylation using anhydrous trifluoromethane sulphonic acid treatment ultimately showed that the IR alpha- and beta-subunits from ScN2a cells are aberrantly glycosylated. The increased formation of IR-IGF-1R hybrids in ScN2a cells may be part of a neuroprotective response to prion infection. The degree and functional significance of aberrantly glycosylated proteins in ScN2a cells remain to be determined.

Full Text

The Full Text of this article is available as a PDF (359.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo M., Raizada M. K., LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol. 1989 Spring-Summer;3(1-2):71–100. doi: 10.1007/BF02935589. [DOI] [PubMed] [Google Scholar]
  2. Bailyes E. M., Navé B. T., Soos M. A., Orr S. R., Hayward A. C., Siddle K. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J. 1997 Oct 1;327(Pt 1):209–215. doi: 10.1042/bj3270209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bastian W., Zhu J., Way B., Lockwood D., Livingston J. Glycosylation of Asn397 or Asn418 is required for normal insulin receptor biosynthesis and processing. Diabetes. 1993 Jul;42(7):966–974. doi: 10.2337/diab.42.7.966. [DOI] [PubMed] [Google Scholar]
  4. Biessels G. J., Kamal A., Urban I. J., Spruijt B. M., Erkelens D. W., Gispen W. H. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res. 1998 Jul 27;800(1):125–135. doi: 10.1016/s0006-8993(98)00510-1. [DOI] [PubMed] [Google Scholar]
  5. Butler D. A., Scott M. R., Bockman J. M., Borchelt D. R., Taraboulos A., Hsiao K. K., Kingsbury D. T., Prusiner S. B. Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol. 1988 May;62(5):1558–1564. doi: 10.1128/jvi.62.5.1558-1564.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caro L. H., Ohali A., Gorden P., Collier E. Mutational analysis of the NH2-terminal glycosylation sites of the insulin receptor alpha-subunit. Diabetes. 1994 Feb;43(2):240–246. doi: 10.2337/diab.43.2.240. [DOI] [PubMed] [Google Scholar]
  7. Collier E., Gorden P. O-linked oligosaccharides on insulin receptor. Diabetes. 1991 Feb;40(2):197–203. doi: 10.2337/diab.40.2.197. [DOI] [PubMed] [Google Scholar]
  8. Desbrosses G., Stelling J., Renaudin J. P. Dephosphorylation activates the purified plant plasma membrane H+-ATPase--possible function of phosphothreonine residues in a mechanism not involving the regulatory C-terminal domain of the enzyme. Eur J Biochem. 1998 Jan 15;251(1-2):496–503. doi: 10.1046/j.1432-1327.1998.2510496.x. [DOI] [PubMed] [Google Scholar]
  9. Díaz B., Serna J., De Pablo F., de la Rosa E. J. In vivo regulation of cell death by embryonic (pro)insulin and the insulin receptor during early retinal neurogenesis. Development. 2000 Apr;127(8):1641–1649. doi: 10.1242/dev.127.8.1641. [DOI] [PubMed] [Google Scholar]
  10. Elleman T. C., Frenkel M. J., Hoyne P. A., McKern N. M., Cosgrove L., Hewish D. R., Jachno K. M., Bentley J. D., Sankovich S. E., Ward C. W. Mutational analysis of the N-linked glycosylation sites of the human insulin receptor. Biochem J. 2000 May 1;347(Pt 3):771–779. [PMC free article] [PubMed] [Google Scholar]
  11. Fryksdale Beth G., Jedrzejewski Paul T., Wong David L., Gaertner Alfred L., Miller Brian S. Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry for proteomic analysis. Electrophoresis. 2002 Jul;23(14):2184–2193. doi: 10.1002/1522-2683(200207)23:14<2184::AID-ELPS2184>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  12. Greene Michael W., Garofalo Robert S. Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Biochemistry. 2002 Jun 4;41(22):7082–7091. doi: 10.1021/bi015992f. [DOI] [PubMed] [Google Scholar]
  13. Guan Z., Söderberg M., Sindelar P., Prusiner S. B., Kristensson K., Dallner G. Lipid composition in scrapie-infected mouse brain: prion infection increases the levels of dolichyl phosphate and ubiquinone. J Neurochem. 1996 Jan;66(1):277–285. doi: 10.1046/j.1471-4159.1996.66010277.x. [DOI] [PubMed] [Google Scholar]
  14. Gunn-Moore F. J., Tavaré J. M. Apoptosis of cerebellar granule cells induced by serum withdrawal, glutamate or beta-amyloid, is independent of Jun kinase or p38 mitogen activated protein kinase activation. Neurosci Lett. 1998 Jun 26;250(1):53–56. doi: 10.1016/s0304-3940(98)00438-8. [DOI] [PubMed] [Google Scholar]
  15. Heidenreich K. A., Toledo S. P. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis. Endocrinology. 1989 Sep;125(3):1451–1457. doi: 10.1210/endo-125-3-1451. [DOI] [PubMed] [Google Scholar]
  16. Heidenreich K. A., Zahniser N. R., Berhanu P., Brandenburg D., Olefsky J. M. Structural differences between insulin receptors in the brain and peripheral target tissues. J Biol Chem. 1983 Jul 25;258(14):8527–8530. [PubMed] [Google Scholar]
  17. Karagiannis S. N., King R. H., Thomas P. K. Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. J Anat. 1997 Oct;191(Pt 3):431–440. doi: 10.1046/j.1469-7580.1997.19130431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kasuya J., Paz I. B., Maddux B. A., Goldfine I. D., Hefta S. A., Fujita-Yamaguchi Y. Characterization of human placental insulin-like growth factor-I/insulin hybrid receptors by protein microsequencing and purification. Biochemistry. 1993 Dec 14;32(49):13531–13536. doi: 10.1021/bi00212a019. [DOI] [PubMed] [Google Scholar]
  19. Klausing K., Scheidtmann K. H., Baumann E. A., Knippers R. Effects of in vitro dephosphorylation on DNA-binding and DNA helicase activities of simian virus 40 large tumor antigen. J Virol. 1988 Apr;62(4):1258–1265. doi: 10.1128/jvi.62.4.1258-1265.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kurup Ravi Kumar, Kurup Parameswara Achutha. Hypothalamic digoxin, hemispheric dominance, and neuroimmune integration. Int J Neurosci. 2002 Apr;112(4):441–462. doi: 10.1080/00207450290025572. [DOI] [PubMed] [Google Scholar]
  21. Leconte I., Auzan C., Debant A., Rossi B., Clauser E. N-linked oligosaccharide chains of the insulin receptor beta subunit are essential for transmembrane signaling. J Biol Chem. 1992 Aug 25;267(24):17415–17423. [PubMed] [Google Scholar]
  22. Leconte I., Carpentier J. L., Clauser E. The functions of the human insulin receptor are affected in different ways by mutation of each of the four N-glycosylation sites in the beta subunit. J Biol Chem. 1994 Jul 8;269(27):18062–18071. [PubMed] [Google Scholar]
  23. Maley F., Trimble R. B., Tarentino A. L., Plummer T. H., Jr Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem. 1989 Aug 1;180(2):195–204. doi: 10.1016/0003-2697(89)90115-2. [DOI] [PubMed] [Google Scholar]
  24. Moroo I., Yamada T., Makino H., Tooyama I., McGeer P. L., McGeer E. G., Hirayama K. Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson's disease. Acta Neuropathol. 1994;87(4):343–348. doi: 10.1007/BF00313602. [DOI] [PubMed] [Google Scholar]
  25. Mosthaf L., Grako K., Dull T. J., Coussens L., Ullrich A., McClain D. A. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990 Aug;9(8):2409–2413. doi: 10.1002/j.1460-2075.1990.tb07416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Naslavsky N., Stein R., Yanai A., Friedlander G., Taraboulos A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem. 1997 Mar 7;272(10):6324–6331. doi: 10.1074/jbc.272.10.6324. [DOI] [PubMed] [Google Scholar]
  27. Olson T. S., Lane M. D. Post-translational acquisition of insulin binding activity by the insulin proreceptor. Correlation to recognition by autoimmune antibody. J Biol Chem. 1987 May 15;262(14):6816–6822. [PubMed] [Google Scholar]
  28. Ostlund P., Lindegren H., Pettersson C., Bedecs K. Altered insulin receptor processing and function in scrapie-infected neuroblastoma cell lines. Brain Res Mol Brain Res. 2001 Dec 30;97(2):161–170. doi: 10.1016/s0169-328x(01)00316-3. [DOI] [PubMed] [Google Scholar]
  29. Ostlund P., Lindegren H., Pettersson C., Bedecs K. Up-regulation of functionally impaired insulin-like growth factor-1 receptor in scrapie-infected neuroblastoma cells. J Biol Chem. 2001 Jul 18;276(39):36110–36115. doi: 10.1074/jbc.M105710200. [DOI] [PubMed] [Google Scholar]
  30. Ota A., Shemer J., Pruss R. M., Lowe W. L., Jr, LeRoith D. Characterization of the altered oligosaccharide composition of the insulin receptor on neural-derived cells. Brain Res. 1988 Mar 8;443(1-2):1–11. doi: 10.1016/0006-8993(88)91592-2. [DOI] [PubMed] [Google Scholar]
  31. Pandini Giuseppe, Frasca Francesco, Mineo Rossana, Sciacca Laura, Vigneri Riccardo, Belfiore Antonino. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem. 2002 Jul 22;277(42):39684–39695. doi: 10.1074/jbc.M202766200. [DOI] [PubMed] [Google Scholar]
  32. Prusiner S. B. Prions. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ronnett G. V., Knutson V. P., Kohanski R. A., Simpson T. L., Lane M. D. Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J Biol Chem. 1984 Apr 10;259(7):4566–4575. [PubMed] [Google Scholar]
  34. Rudd P. M., Endo T., Colominas C., Groth D., Wheeler S. F., Harvey D. J., Wormald M. R., Serban H., Prusiner S. B., Kobata A. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13044–13049. doi: 10.1073/pnas.96.23.13044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schenk B., Fernandez F., Waechter C. J. The ins(ide) and out(side) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology. 2001 May;11(5):61R–70R. doi: 10.1093/glycob/11.5.61r. [DOI] [PubMed] [Google Scholar]
  36. Schulingkamp R. J., Pagano T. C., Hung D., Raffa R. B. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000 Dec;24(8):855–872. doi: 10.1016/s0149-7634(00)00040-3. [DOI] [PubMed] [Google Scholar]
  37. Seely B. L., Reichart D. R., Takata Y., Yip C., Olefsky J. M. A functional assessment of insulin/insulin-like growth factor-I hybrid receptors. Endocrinology. 1995 Apr;136(4):1635–1641. doi: 10.1210/endo.136.4.7895674. [DOI] [PubMed] [Google Scholar]
  38. Seino S., Bell G. I. Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun. 1989 Feb 28;159(1):312–316. doi: 10.1016/0006-291x(89)92439-x. [DOI] [PubMed] [Google Scholar]
  39. Sojar H. T., Bahl O. P. Chemical deglycosylation of glycoproteins. Methods Enzymol. 1987;138:341–350. doi: 10.1016/0076-6879(87)38029-2. [DOI] [PubMed] [Google Scholar]
  40. Soos M. A., Field C. E., Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J. 1993 Mar 1;290(Pt 2):419–426. doi: 10.1042/bj2900419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Soos M. A., Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J. 1989 Oct 15;263(2):553–563. doi: 10.1042/bj2630553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spiro M. J., Spiro R. G. Control of N-linked carbohydrate unit synthesis in thyroid endoplasmic reticulum by membrane organization and dolichyl phosphate availability. J Biol Chem. 1986 Nov 5;261(31):14725–14732. [PubMed] [Google Scholar]
  43. Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
  44. Zhao W. Q., Alkon D. L. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001 May 25;177(1-2):125–134. doi: 10.1016/s0303-7207(01)00455-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES