Abstract
N-terminal and central domains of ryanodine receptor 1 (RyR1), where many reported malignant hyperthermia (MH) mutations are localized, represent putative channel regulatory domains. Recent domain peptide (DP) probe studies led us to the hypothesis that these domains interact to stabilize the closed state of channel (zipping), while weakening of domain-domain interactions (unzipping) by mutation de-stabilizes the channel, making it leaky to Ca2+ or sensitive to the agonists of RyR1. As shown previously, DP1 (N-terminal domain peptide) and DP4 (central domain peptide) produced MH-like channel activation/sensitization effects, presumably by peptide binding to sites critical to stabilizing domain-domain interactions and resultant loss of conformational constraints. Here we report that polyclonal anti-DP1 and anti-DP4 antibodies also produce MH-like channel activation and sensitization effects as evidenced by about 4-fold enhancement of high affinity [3H]ryanodine binding to RyR1 and by a significant left-shift of the concentration-dependence of activation of sarcoplasmic reticulum Ca2+ release by polylysine. Fluorescence quenching experiments demonstrate that the accessibility of a DP4-directed, conformationally sensitive fluorescence probe linked to the RyR1 N-terminal domain is increased in the presence of domain-specific antibodies, consistent with the view that these antibodies produce unzipping of interacting domains that are of hindered accessibility to the surrounding aqueous environment. Our results suggest that domain-specific antibody binding induces a conformational change resulting in channel activation, and are consistent with the hypothesis that interacting N-terminal and central domains are intimately involved in the regulation of RyR1 channel function.
Full Text
The Full Text of this article is available as a PDF (307.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen P. D. Leaky "feet" and sudden death. Circ Res. 2002 Aug 9;91(3):181–182. doi: 10.1161/01.res.0000030194.38795.86. [DOI] [PubMed] [Google Scholar]
- Bauce Barbara, Rampazzo Alessandra, Basso Cristina, Bagattin Alessia, Daliento Luciano, Tiso Natascia, Turrini Pietro, Thiene Gaetano, Danieli Gian Antonio, Nava Andrea. Screening for ryanodine receptor type 2 mutations in families with effort-induced polymorphic ventricular arrhythmias and sudden death: early diagnosis of asymptomatic carriers. J Am Coll Cardiol. 2002 Jul 17;40(2):341–349. doi: 10.1016/s0735-1097(02)01946-0. [DOI] [PubMed] [Google Scholar]
- Brown R. L., Pollock A. N., Couchman K. G., Hodges M., Hutchinson D. O., Waaka R., Lynch P., McCarthy T. V., Stowell K. M. A novel ryanodine receptor mutation and genotype-phenotype correlation in a large malignant hyperthermia New Zealand Maori pedigree. Hum Mol Genet. 2000 Jun 12;9(10):1515–1524. doi: 10.1093/hmg/9.10.1515. [DOI] [PubMed] [Google Scholar]
- Campbell K. P., Knudson C. M., Imagawa T., Leung A. T., Sutko J. L., Kahl S. D., Raab C. R., Madson L. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem. 1987 May 15;262(14):6460–6463. [PubMed] [Google Scholar]
- Dirksen Robert T., Avila Guillermo. Altered ryanodine receptor function in central core disease: leaky or uncoupled Ca(2+) release channels? Trends Cardiovasc Med. 2002 Jul;12(5):189–197. doi: 10.1016/s1050-1738(02)00163-9. [DOI] [PubMed] [Google Scholar]
- Domen P. L., Nevens J. R., Mallia A. K., Hermanson G. T., Klenk D. C. Site-directed immobilization of proteins. J Chromatogr. 1990 Jun 27;510:293–302. doi: 10.1016/s0021-9673(01)93763-x. [DOI] [PubMed] [Google Scholar]
- El-Hayek R., Ikemoto N. Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling. Biochemistry. 1998 May 12;37(19):7015–7020. doi: 10.1021/bi972907o. [DOI] [PubMed] [Google Scholar]
- El-Hayek R., Saiki Y., Yamamoto T., Ikemoto N. A postulated role of the near amino-terminal domain of the ryanodine receptor in the regulation of the sarcoplasmic reticulum Ca(2+) channel. J Biol Chem. 1999 Nov 19;274(47):33341–33347. doi: 10.1074/jbc.274.47.33341. [DOI] [PubMed] [Google Scholar]
- Froemming G. R., Ohlendieck K. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases. Front Biosci. 2001 Jan 1;6:D65–D74. doi: 10.2741/froemmin. [DOI] [PubMed] [Google Scholar]
- Fruen B. R., Mickelson J. R., Louis C. F. Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J Biol Chem. 1997 Oct 24;272(43):26965–26971. doi: 10.1074/jbc.272.43.26965. [DOI] [PubMed] [Google Scholar]
- Ikemoto N., Kim D. H., Antoniu B. Measurement of calcium release in isolated membrane systems: coupling between the transverse tubule and sarcoplasmic reticulum. Methods Enzymol. 1988;157:469–480. doi: 10.1016/0076-6879(88)57096-9. [DOI] [PubMed] [Google Scholar]
- Jurkat-Rott K., McCarthy T., Lehmann-Horn F. Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve. 2000 Jan;23(1):4–17. doi: 10.1002/(sici)1097-4598(200001)23:1<4::aid-mus3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Kang J. J., Tarcsafalvi A., Carlos A. D., Fujimoto E., Shahrokh Z., Thevenin B. J., Shohet S. B., Ikemoto N. Conformational changes in the foot protein of the sarcoplasmic reticulum assessed by site-directed fluorescent labeling. Biochemistry. 1992 Mar 31;31(12):3288–3293. doi: 10.1021/bi00127a034. [DOI] [PubMed] [Google Scholar]
- Laitinen P. J., Brown K. M., Piippo K., Swan H., Devaney J. M., Brahmbhatt B., Donarum E. A., Marino M., Tiso N., Viitasalo M. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001 Jan 30;103(4):485–490. doi: 10.1161/01.cir.103.4.485. [DOI] [PubMed] [Google Scholar]
- Lamb G. D., Posterino G. S., Yamamoto T., Ikemoto N. Effects of a domain peptide of the ryanodine receptor on Ca2+ release in skinned skeletal muscle fibers. Am J Physiol Cell Physiol. 2001 Jul;281(1):C207–C214. doi: 10.1152/ajpcell.2001.281.1.C207. [DOI] [PubMed] [Google Scholar]
- Loke J., MacLennan D. H. Malignant hyperthermia and central core disease: disorders of Ca2+ release channels. Am J Med. 1998 May;104(5):470–486. doi: 10.1016/s0002-9343(98)00108-9. [DOI] [PubMed] [Google Scholar]
- Louis C. F., Balog E. M., Fruen B. R. Malignant hyperthermia: an inherited disorder of skeletal muscle Ca+ regulation. Biosci Rep. 2001 Apr;21(2):155–168. doi: 10.1023/a:1013644107519. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H. Ca2+ signalling and muscle disease. Eur J Biochem. 2000 Sep;267(17):5291–5297. doi: 10.1046/j.1432-1327.2000.01566.x. [DOI] [PubMed] [Google Scholar]
- Marks Andrew R., Priori Silvia, Memmi Mirella, Kontula Kimmo, Laitinen Päivi J. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol. 2002 Jan;190(1):1–6. doi: 10.1002/jcp.10031. [DOI] [PubMed] [Google Scholar]
- McCarthy T. V., Quane K. A., Lynch P. J. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat. 2000;15(5):410–417. doi: 10.1002/(SICI)1098-1004(200005)15:5<410::AID-HUMU2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
- Mickelson J. R., Louis C. F. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996 Apr;76(2):537–592. doi: 10.1152/physrev.1996.76.2.537. [DOI] [PubMed] [Google Scholar]
- Monnier N., Romero N. B., Lerale J., Landrieu P., Nivoche Y., Fardeau M., Lunardi J. Familial and sporadic forms of central core disease are associated with mutations in the C-terminal domain of the skeletal muscle ryanodine receptor. Hum Mol Genet. 2001 Oct 15;10(22):2581–2592. doi: 10.1093/hmg/10.22.2581. [DOI] [PubMed] [Google Scholar]
- Nelson Thomas E. Malignant hyperthermia: a pharmacogenetic disease of Ca++ regulating proteins. Curr Mol Med. 2002 Jun;2(4):347–369. doi: 10.2174/1566524023362429. [DOI] [PubMed] [Google Scholar]
- Paul-Pletzer K., Palnitkar S. S., Jimenez L. S., Morimoto H., Parness J. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling. Biochemistry. 2001 Jan 16;40(2):531–542. doi: 10.1021/bi001502s. [DOI] [PubMed] [Google Scholar]
- Paul-Pletzer Kalanethee, Yamamoto Takeshi, Bhat Manjunatha B., Ma Jianjie, Ikemoto Noriaki, Jimenez Leslie S., Morimoto Hiromi, Williams Philip G., Parness Jerome. Identification of a dantrolene-binding sequence on the skeletal muscle ryanodine receptor. J Biol Chem. 2002 Jul 11;277(38):34918–34923. doi: 10.1074/jbc.M205487200. [DOI] [PubMed] [Google Scholar]
- Priori S. G., Napolitano C., Tiso N., Memmi M., Vignati G., Bloise R., Sorrentino V., Danieli G. A. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001 Jan 16;103(2):196–200. doi: 10.1161/01.cir.103.2.196. [DOI] [PubMed] [Google Scholar]
- Priori Silvia G., Napolitano Carlo, Memmi Mirella, Colombi Barbara, Drago Fabrizio, Gasparini Maurizio, DeSimone Luciano, Coltorti Fernando, Bloise Raffaella, Keegan Roberto. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002 Jul 2;106(1):69–74. doi: 10.1161/01.cir.0000020013.73106.d8. [DOI] [PubMed] [Google Scholar]
- Rueffert H., Kraus H., Olthoff D., Deutrich C., Froster U. G. Identification of a novel mutation in the ryanodine receptor gene (RYR1) in patients with malignant hyperthermia. Hum Mutat. 2001 Mar;17(3):238–238. doi: 10.1002/humu.15. [DOI] [PubMed] [Google Scholar]
- Ríos E., Pizarro G., Stefani E. Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol. 1992;54:109–133. doi: 10.1146/annurev.ph.54.030192.000545. [DOI] [PubMed] [Google Scholar]
- Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
- Saiki Y., El-Hayek R., Ikemoto N. Involvement of the Glu724-Pro760 region of the dihydropyridine receptor II-III loop in skeletal muscle-type excitation-contraction coupling. J Biol Chem. 1999 Mar 19;274(12):7825–7832. doi: 10.1074/jbc.274.12.7825. [DOI] [PubMed] [Google Scholar]
- Sambuughin N., McWilliams S., de Bantel A., Sivakumar K., Nelson T. E. Single-amino-acid deletion in the RYR1 gene, associated with malignant hyperthermia susceptibility and unusual contraction phenotype. Am J Hum Genet. 2001 May 29;69(1):204–208. doi: 10.1086/321270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sambuughin N., Nelson T. E., Jankovic J., Xin C., Meissner G., Mullakandov M., Ji J., Rosenberg H., Sivakumar K., Goldfarb L. G. Identification and functional characterization of a novel ryanodine receptor mutation causing malignant hyperthermia in North American and South American families. Neuromuscul Disord. 2001 Sep;11(6-7):530–537. doi: 10.1016/s0960-8966(01)00202-4. [DOI] [PubMed] [Google Scholar]
- Scacheri P. C., Hoffman E. P., Fratkin J. D., Semino-Mora C., Senchak A., Davis M. R., Laing N. G., Vedanarayanan V., Subramony S. H. A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy. Neurology. 2000 Dec 12;55(11):1689–1696. doi: 10.1212/wnl.55.11.1689. [DOI] [PubMed] [Google Scholar]
- Schneider M. F. Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol. 1994;56:463–484. doi: 10.1146/annurev.ph.56.030194.002335. [DOI] [PubMed] [Google Scholar]
- Shevchenko S., Feng W., Varsanyi M., Shoshan-Barmatz V. Identification, characterization and partial purification of a thiol-protease which cleaves specifically the skeletal muscle ryanodine receptor/Ca2+ release channel. J Membr Biol. 1998 Jan 1;161(1):33–43. doi: 10.1007/s002329900312. [DOI] [PubMed] [Google Scholar]
- Shtifman Alexander, Ward Christopher W., Yamamoto Takeshi, Wang Jianli, Olbinski Beth, Valdivia Hector H., Ikemoto Noriaki, Schneider Martin F. Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle. J Gen Physiol. 2002 Jan;119(1):15–32. doi: 10.1085/jgp.119.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilgen N., Zorzato F., Halliger-Keller B., Muntoni F., Sewry C., Palmucci L. M., Schneider C., Hauser E., Lehmann-Horn F., Müller C. R. Identification of four novel mutations in the C-terminal membrane spanning domain of the ryanodine receptor 1: association with central core disease and alteration of calcium homeostasis. Hum Mol Genet. 2001 Dec 1;10(25):2879–2887. doi: 10.1093/hmg/10.25.2879. [DOI] [PubMed] [Google Scholar]
- Tiso N., Stephan D. A., Nava A., Bagattin A., Devaney J. M., Stanchi F., Larderet G., Brahmbhatt B., Brown K., Bauce B. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001 Feb 1;10(3):189–194. doi: 10.1093/hmg/10.3.189. [DOI] [PubMed] [Google Scholar]
- Tong J., Oyamada H., Demaurex N., Grinstein S., McCarthy T. V., MacLennan D. H. Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem. 1997 Oct 17;272(42):26332–26339. doi: 10.1074/jbc.272.42.26332. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., El-Hayek R., Ikemoto N. Postulated role of interdomain interaction within the ryanodine receptor in Ca(2+) channel regulation. J Biol Chem. 2000 Apr 21;275(16):11618–11625. doi: 10.1074/jbc.275.16.11618. [DOI] [PubMed] [Google Scholar]
- Yamamoto Takeshi, Ikemoto Noriaki. Spectroscopic monitoring of local conformational changes during the intramolecular domain-domain interaction of the ryanodine receptor. Biochemistry. 2002 Feb 5;41(5):1492–1501. doi: 10.1021/bi015581z. [DOI] [PubMed] [Google Scholar]
- Yamamoto Takeshi, Ikemoto Noriaki. T-tubule depolarization-induced local events in the ryanodine receptor, as monitored with the fluorescent conformational probe incorporated by mediation of peptide A. J Biol Chem. 2001 Oct 26;277(2):984–992. doi: 10.1074/jbc.M102347200. [DOI] [PubMed] [Google Scholar]
- Yamamoto Takeshi, Rodriguez John, Ikemoto Noriaki. Ca2+-dependent dual functions of peptide C. The peptide corresponding to the Glu724-Pro760 region (the so-called determinant of excitation-contraction coupling) of the dihydropyridine receptor alpha 1 subunit II-III loop. J Biol Chem. 2001 Oct 26;277(2):993–1001. doi: 10.1074/jbc.M105837200. [DOI] [PubMed] [Google Scholar]
- Yang Tianzhong, Ta Tram Anh, Pessah Isaac N., Allen Paul D. Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling. J Biol Chem. 2003 May 5;278(28):25722–25730. doi: 10.1074/jbc.M302165200. [DOI] [PubMed] [Google Scholar]
- Yano M., el-Hayek R., Ikemoto N. Conformational changes in the junctional foot protein/Ca2+ release channel mediate depolarization-induced Ca2+ release from sarcoplasmic reticulum. J Biol Chem. 1995 Feb 17;270(7):3017–3021. doi: 10.1074/jbc.270.7.3017. [DOI] [PubMed] [Google Scholar]
- Zorzato F., Menegazzi P., Treves S., Ronjat M. Role of malignant hyperthermia domain in the regulation of Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1996 Sep 13;271(37):22759–22763. doi: 10.1074/jbc.271.37.22759. [DOI] [PubMed] [Google Scholar]
- el-Hayek R., Antoniu B., Wang J., Hamilton S. L., Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1995 Sep 22;270(38):22116–22118. doi: 10.1074/jbc.270.38.22116. [DOI] [PubMed] [Google Scholar]
- el-Hayek R., Lokuta A. J., Arévalo C., Valdivia H. H. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J Biol Chem. 1995 Dec 1;270(48):28696–28704. doi: 10.1074/jbc.270.48.28696. [DOI] [PubMed] [Google Scholar]