Abstract
The F-actin-binding protein cortactin is an important regulator of cytoskeletal dynamics, and a prominent target of various tyrosine kinases. Tyrosine phosphorylation of cortactin has been suggested to reduce its F-actin cross-linking capability. In the present study, we investigated whether a reciprocal relationship exists, i.e. whether the polymerization state of actin impacts on the cortactin tyrosine phosphorylation. Actin depolymerization by LB (latrunculin B) induced robust phosphorylation of C-terminal tyrosine residues of cortactin. In contrast, F-actin stabilization by jasplakinolide, which redistributed cortactin to F-actin-containing patches, prevented cortactin phosphorylation triggered by hypertonic stress or LB. Using cell lines deficient in candidate tyrosine kinases, we found that the F-actin depolymerization-induced cortactin phosphorylation was mediated by the Fyn/Fer kinase pathway, independent of Src and c-Abl. LB caused modest Fer activation and strongly facilitated the association between Fer and cortactin. Interestingly, the F-actin-binding region within the cortactin N-terminus was essential for the efficient phosphorylation of C-terminal tyrosine residues. Investigating the structural requirements for the Fer-cortactin association, we found that (i) phosphorylation-incompetent cortactin still bound to Fer; (ii) the isolated N-terminus associated with Fer; and (iii) the C-terminus alone was insufficient for binding. Thus the cortactin N-terminus participates in the Fer-cortactin interaction, which cannot be fully due to the binding of the Fer Src homology 2 domain to C-terminal tyrosine residues of cortactin. Taken together, F-actin stabilization prevents cortactin tyrosine phosphorylation, whereas depolymerization promotes it. Depolymerization-induced phosphorylation is mediated by Fer, and requires the actin-binding domain of cortactin. These results define a novel F-actin-dependent pathway that may serve as a feedback mechanism during cytoskeleton remodelling.
Full Text
The Full Text of this article is available as a PDF (668.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abedi H., Zachary I. Cytochalasin D stimulation of tyrosine phosphorylation and phosphotyrosine-associated kinase activity in vascular smooth muscle cells. Biochem Biophys Res Commun. 1998 Apr 28;245(3):646–650. doi: 10.1006/bbrc.1998.8284. [DOI] [PubMed] [Google Scholar]
- Arregui C., Pathre P., Lilien J., Balsamo J. The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and beta1-integrins. J Cell Biol. 2000 Jun 12;149(6):1263–1274. doi: 10.1083/jcb.149.6.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birukov Konstantin G., Birukova Anna A., Dudek Steven M., Verin Alexander D., Crow Michael T., Zhan Xi, DePaola Natacha, Garcia Joe G. N. Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol. 2002 Apr;26(4):453–464. doi: 10.1165/ajrcmb.26.4.4725. [DOI] [PubMed] [Google Scholar]
- Cao Hong, Orth James D., Chen Jing, Weller Shaun G., Heuser John E., McNiven Mark A. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol Cell Biol. 2003 Mar;23(6):2162–2170. doi: 10.1128/MCB.23.6.2162-2170.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig A. W., Zirngibl R., Greer P. Disruption of coiled-coil domains in Fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J Biol Chem. 1999 Jul 9;274(28):19934–19942. doi: 10.1074/jbc.274.28.19934. [DOI] [PubMed] [Google Scholar]
- Craig A. W., Zirngibl R., Williams K., Cole L. A., Greer P. A. Mice devoid of fer protein-tyrosine kinase activity are viable and fertile but display reduced cortactin phosphorylation. Mol Cell Biol. 2001 Jan;21(2):603–613. doi: 10.1128/MCB.21.2.603-613.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig Andrew W. B., Greer Peter A. Fer kinase is required for sustained p38 kinase activation and maximal chemotaxis of activated mast cells. Mol Cell Biol. 2002 Sep;22(18):6363–6374. doi: 10.1128/MCB.22.18.6363-6374.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crostella L., Lidder S., Williams R., Skouteris G. G. Hepatocyte Growth Factor/scatter factor-induces phosphorylation of cortactin in A431 cells in a Src kinase-independent manner. Oncogene. 2001 Jun 21;20(28):3735–3745. doi: 10.1038/sj.onc.1204474. [DOI] [PubMed] [Google Scholar]
- Di Ciano Caterina, Nie Zilin, Szászi Katalin, Lewis Alison, Uruno Takehito, Zhan Xi, Rotstein Ori D., Mak Alan, Kapus András. Osmotic stress-induced remodeling of the cortical cytoskeleton. Am J Physiol Cell Physiol. 2002 Sep;283(3):C850–C865. doi: 10.1152/ajpcell.00018.2002. [DOI] [PubMed] [Google Scholar]
- Dudek Steven M., Birukov Konstantin G., Zhan Xi, Garcia Joe G. N. Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochem Biophys Res Commun. 2002 Nov 8;298(4):511–519. doi: 10.1016/s0006-291x(02)02492-0. [DOI] [PubMed] [Google Scholar]
- Gallet C., Rosa J. P., Habib A., Lebret M., Lévy-Tolédano S., Maclouf J. Tyrosine phosphorylation of cortactin associated with Syk accompanies thromboxane analogue-induced platelet shape change. J Biol Chem. 1999 Aug 13;274(33):23610–23616. doi: 10.1074/jbc.274.33.23610. [DOI] [PubMed] [Google Scholar]
- Greer Peter. Closing in on the biological functions of Fps/Fes and Fer. Nat Rev Mol Cell Biol. 2002 Apr;3(4):278–289. doi: 10.1038/nrm783. [DOI] [PubMed] [Google Scholar]
- Haigh J., McVeigh J., Greer P. The fps/fes tyrosine kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells and is localized in the trans-golgi network. Cell Growth Differ. 1996 Jul;7(7):931–944. [PubMed] [Google Scholar]
- Head Julie A., Jiang Dongyan, Li Min, Zorn Lynda J., Schaefer Erik M., Parsons J. Thomas, Weed Scott A. Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell. 2003 Apr 17;14(8):3216–3229. doi: 10.1091/mbc.E02-11-0753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C., Liu J., Haudenschild C. C., Zhan X. The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem. 1998 Oct 2;273(40):25770–25776. doi: 10.1074/jbc.273.40.25770. [DOI] [PubMed] [Google Scholar]
- Huang C., Ni Y., Wang T., Gao Y., Haudenschild C. C., Zhan X. Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem. 1997 May 23;272(21):13911–13915. doi: 10.1074/jbc.272.21.13911. [DOI] [PubMed] [Google Scholar]
- Huang Jinhong, Asawa Tamae, Takato Tsuyoshi, Sakai Ryuichi. Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma. J Biol Chem. 2003 Sep 16;278(48):48367–48376. doi: 10.1074/jbc.M308213200. [DOI] [PubMed] [Google Scholar]
- Kanner S. B., Reynolds A. B., Vines R. R., Parsons J. T. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci U S A. 1990 May;87(9):3328–3332. doi: 10.1073/pnas.87.9.3328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapus A., Di Ciano C., Sun J., Zhan X., Kim L., Wong T. W., Rotstein O. D. Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. J Biol Chem. 2000 Oct 13;275(41):32289–32298. doi: 10.1074/jbc.M003172200. [DOI] [PubMed] [Google Scholar]
- Kapus A., Szászi K., Sun J., Rizoli S., Rotstein O. D. Cell shrinkage regulates Src kinases and induces tyrosine phosphorylation of cortactin, independent of the osmotic regulation of Na+/H+ exchangers. J Biol Chem. 1999 Mar 19;274(12):8093–8102. doi: 10.1074/jbc.274.12.8093. [DOI] [PubMed] [Google Scholar]
- Katsube T., Takahisa M., Ueda R., Hashimoto N., Kobayashi M., Togashi S. Cortactin associates with the cell-cell junction protein ZO-1 in both Drosophila and mouse. J Biol Chem. 1998 Nov 6;273(45):29672–29677. doi: 10.1074/jbc.273.45.29672. [DOI] [PubMed] [Google Scholar]
- Kim L., Wong T. W. Growth factor-dependent phosphorylation of the actin-binding protein cortactin is mediated by the cytoplasmic tyrosine kinase FER. J Biol Chem. 1998 Sep 4;273(36):23542–23548. doi: 10.1074/jbc.273.36.23542. [DOI] [PubMed] [Google Scholar]
- Kim L., Wong T. W. The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp120 and is activated by growth factors. Mol Cell Biol. 1995 Aug;15(8):4553–4561. doi: 10.1128/mcb.15.8.4553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landriscina M., Prudovsky I., Mouta Carreira C., Soldi R., Tarantini F., Maciag T. Amlexanox reversibly inhibits cell migration and proliferation and induces the Src-dependent disassembly of actin stress fibers in vitro. J Biol Chem. 2000 Oct 20;275(42):32753–32762. doi: 10.1074/jbc.M002336200. [DOI] [PubMed] [Google Scholar]
- Li Y., Tondravi M., Liu J., Smith E., Haudenschild C. C., Kaczmarek M., Zhan X. Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res. 2001 Sep 15;61(18):6906–6911. [PubMed] [Google Scholar]
- Lock P., Abram C. L., Gibson T., Courtneidge S. A. A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. EMBO J. 1998 Aug 3;17(15):4346–4357. doi: 10.1093/emboj/17.15.4346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama S., Kurosaki T., Sada K., Yamanashi Y., Yamamoto T., Yamamura H. Physical and functional association of cortactin with Syk in human leukemic cell line K562. J Biol Chem. 1996 Mar 22;271(12):6631–6635. doi: 10.1074/jbc.271.12.6631. [DOI] [PubMed] [Google Scholar]
- Masszi Andras, Di Ciano Caterina, Sirokmány Gábor, Arthur William T., Rotstein Ori D., Wang Jiaxu, McCulloch Christopher A. G., Rosivall László, Mucsi István, Kapus András. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2002 Dec 27;284(5):F911–F924. doi: 10.1152/ajprenal.00183.2002. [DOI] [PubMed] [Google Scholar]
- McNiven M. A., Kim L., Krueger E. W., Orth J. D., Cao H., Wong T. W. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol. 2000 Oct 2;151(1):187–198. doi: 10.1083/jcb.151.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta Dolly, Tiruppathi Chinnaswamy, Sandoval Raudal, Minshall Richard D., Holinstat Michael, Malik Asrar B. Modulatory role of focal adhesion kinase in regulating human pulmonary arterial endothelial barrier function. J Physiol. 2002 Mar 15;539(Pt 3):779–789. doi: 10.1113/jphysiol.2001.013289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamura H., Resh M. D. p80/85 cortactin associates with the Src SH2 domain and colocalizes with v-Src in transformed cells. J Biol Chem. 1995 Nov 3;270(44):26613–26618. doi: 10.1074/jbc.270.44.26613. [DOI] [PubMed] [Google Scholar]
- Patel A. S., Schechter G. L., Wasilenko W. J., Somers K. D. Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene. 1998 Jun 25;16(25):3227–3232. doi: 10.1038/sj.onc.1201850. [DOI] [PubMed] [Google Scholar]
- Plattner R., Kadlec L., DeMali K. A., Kazlauskas A., Pendergast A. M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 1999 Sep 15;13(18):2400–2411. doi: 10.1101/gad.13.18.2400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizoli S. B., Rotstein O. D., Parodo J., Phillips M. J., Kapus A. Hypertonic inhibition of exocytosis in neutrophils: central role for osmotic actin skeleton remodeling. Am J Physiol Cell Physiol. 2000 Sep;279(3):C619–C633. doi: 10.1152/ajpcell.2000.279.3.C619. [DOI] [PubMed] [Google Scholar]
- Rosato R., Veltmaat J. M., Groffen J., Heisterkamp N. Involvement of the tyrosine kinase fer in cell adhesion. Mol Cell Biol. 1998 Oct;18(10):5762–5770. doi: 10.1128/mcb.18.10.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanguinetti Amy R., Mastick Cynthia Corley. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal. 2003 Mar;15(3):289–298. doi: 10.1016/s0898-6568(02)00090-6. [DOI] [PubMed] [Google Scholar]
- Spector I., Shochet N. R., Blasberger D., Kashman Y. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton. 1989;13(3):127–144. doi: 10.1002/cm.970130302. [DOI] [PubMed] [Google Scholar]
- Thomas S. M., Soriano P., Imamoto A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature. 1995 Jul 20;376(6537):267–271. doi: 10.1038/376267a0. [DOI] [PubMed] [Google Scholar]
- Uruno T., Liu J., Zhang P., Fan Yx, Egile C., Li R., Mueller S. C., Zhan X. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol. 2001 Mar;3(3):259–266. doi: 10.1038/35060051. [DOI] [PubMed] [Google Scholar]
- Weaver A. M., Karginov A. V., Kinley A. W., Weed S. A., Li Y., Parsons J. T., Cooper J. A. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol. 2001 Mar 6;11(5):370–374. doi: 10.1016/s0960-9822(01)00098-7. [DOI] [PubMed] [Google Scholar]
- Weaver Alissa M., Heuser John E., Karginov Andrei V., Lee Wei-lih, Parsons J. Thomas, Cooper John A. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol. 2002 Aug 6;12(15):1270–1278. doi: 10.1016/s0960-9822(02)01035-7. [DOI] [PubMed] [Google Scholar]
- Weed S. A., Du Y., Parsons J. T. Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J Cell Sci. 1998 Aug;111(Pt 16):2433–2443. doi: 10.1242/jcs.111.16.2433. [DOI] [PubMed] [Google Scholar]
- Weed S. A., Karginov A. V., Schafer D. A., Weaver A. M., Kinley A. W., Cooper J. A., Parsons J. T. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol. 2000 Oct 2;151(1):29–40. doi: 10.1083/jcb.151.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weed S. A., Parsons J. T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene. 2001 Oct 1;20(44):6418–6434. doi: 10.1038/sj.onc.1204783. [DOI] [PubMed] [Google Scholar]
- Woodring P. J., Hunter T., Wang J. Y. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J Biol Chem. 2001 Apr 17;276(29):27104–27110. doi: 10.1074/jbc.M100559200. [DOI] [PubMed] [Google Scholar]
- Woodring Pamela J., Litwack E. David, O'Leary Dennis D. M., Lucero Ginger R., Wang Jean Y. J., Hunter Tony. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J Cell Biol. 2002 Feb 25;156(5):879–892. doi: 10.1083/jcb.200110014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H., Parsons J. T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol. 1993 Mar;120(6):1417–1426. doi: 10.1083/jcb.120.6.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H., Reynolds A. B., Kanner S. B., Vines R. R., Parsons J. T. Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol. 1991 Oct;11(10):5113–5124. doi: 10.1128/mcb.11.10.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhan X., Hu X., Hampton B., Burgess W. H., Friesel R., Maciag T. Murine cortactin is phosphorylated in response to fibroblast growth factor-1 on tyrosine residues late in the G1 phase of the BALB/c 3T3 cell cycle. J Biol Chem. 1993 Nov 15;268(32):24427–24431. [PubMed] [Google Scholar]
- Zirngibl R., Schulze D., Mirski S. E., Cole S. P., Greer P. A. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking. Exp Cell Res. 2001 May 15;266(1):87–94. doi: 10.1006/excr.2001.5217. [DOI] [PubMed] [Google Scholar]