Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):669–676. doi: 10.1042/BJ20040200

A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity.

Willemien H Wieland 1, Diego Orzáez 1, Aart Lammers 1, Henk K Parmentier 1, Martin W A Verstegen 1, Arjen Schots 1
PMCID: PMC1224204  PMID: 14992684

Abstract

Animals are continuously threatened by pathogens entering the body through natural openings. Here we show that in chicken ( Gallus gallus ), secretory IgA (sIgA) protects the epithelia lining these natural cavities. A gene encoding a chicken polymeric Ig receptor ( GG-pIgR ), a key component of sIgA, was identified, and shown to be expressed in the liver, intestine and bursa of Fabricius. All motifs involved in pIgR function are present, with a highly conserved Ig-binding motif in the first Ig-like domain. Physical association of GG-pIgR with pIgA in bile and intestine demonstrates that this protein is a functional receptor. Thus, as shown for mammals, this receptor interacts with J-chain-containing polymeric IgA (pIgA) at the basolateral epithelial cell surface resulting in transcytosis and subsequent cleavage of the pIgR, releasing sIgA in the mucosal lumen. Interestingly, the extracellular portion of GG-pIgR protein comprises only four Ig-like domains, in contrast with the five domain structure found in mammalian pIgR genes. The second Ig-like domain of mammalian pIgR does not have an orthologous domain in the chicken gene. The presence of pIgR in chicken suggests that this gene has evolved before the divergence of birds and reptiles, indicating that secretory Igs may have a prominent role in first line defence in various non-mammalian species.

Full Text

The Full Text of this article is available as a PDF (693.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakos M. A., Kurosky A., Czerwinski E. W., Goldblum R. M. A conserved binding site on the receptor for polymeric Ig is homologous to CDR1 of Ig V kappa domains. J Immunol. 1993 Aug 1;151(3):1346–1352. [PubMed] [Google Scholar]
  2. Bruce S. R., Kaetzel C. S., Peterson M. L. Cryptic intron activation within the large exon of the mouse polymeric immunoglobulin receptor gene: cryptic splice sites correspond to protein domain boundaries. Nucleic Acids Res. 1999 Sep 1;27(17):3446–3454. doi: 10.1093/nar/27.17.3446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crago S. S., Kulhavy R., Prince S. J., Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med. 1978 Jun 1;147(6):1832–1837. doi: 10.1084/jem.147.6.1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crooijmans R. P., Vrebalov J., Dijkhof R. J., van der Poel J. J., Groenen M. A. Two-dimensional screening of the Wageningen chicken BAC library. Mamm Genome. 2000 May;11(5):360–363. doi: 10.1007/s003350010068. [DOI] [PubMed] [Google Scholar]
  5. Crottet P., Corthésy B. Mapping the interaction between murine IgA and murine secretory component carrying epitope substitutions reveals a role of domains II and III in covalent binding to IgA. J Biol Chem. 1999 Oct 29;274(44):31456–31462. doi: 10.1074/jbc.274.44.31456. [DOI] [PubMed] [Google Scholar]
  6. Crottet P., Corthésy B. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab')2: a possible implication for mucosal defense. J Immunol. 1998 Nov 15;161(10):5445–5453. [PubMed] [Google Scholar]
  7. Dann S. M., Okhuysen P. C., Salameh B. M., DuPont H. L., Chappell C. L. Fecal antibodies to Cryptosporidium parvum in healthy volunteers. Infect Immun. 2000 Sep;68(9):5068–5074. doi: 10.1128/iai.68.9.5068-5074.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deitcher D. L., Mostov K. E. Alternate splicing of rabbit polymeric immunoglobulin receptor. Mol Cell Biol. 1986 Jul;6(7):2712–2715. doi: 10.1128/mcb.6.7.2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fallgreen-Gebauer E., Gebauer W., Bastian A., Kratzin H. D., Eiffert H., Zimmermann B., Karas M., Hilschmann N. The covalent linkage of secretory component to IgA. Structure of sIgA. Biol Chem Hoppe Seyler. 1993 Nov;374(11):1023–1028. doi: 10.1515/bchm3.1993.374.7-12.1023. [DOI] [PubMed] [Google Scholar]
  10. Frutiger S., Hughes G. J., Hanly W. C., Kingzette M., Jaton J. C. The amino-terminal domain of rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers. J Biol Chem. 1986 Dec 15;261(35):16673–16681. [PubMed] [Google Scholar]
  11. Hughes A. L., Hughes M. K. Small genomes for better flyers. Nature. 1995 Oct 5;377(6548):391–391. doi: 10.1038/377391a0. [DOI] [PubMed] [Google Scholar]
  12. Johansen F. E., Natvig Norderhaug I., Røe M., Sandlie I., Brandtzaeg P. Recombinant expression of polymeric IgA: incorporation of J chain and secretory component of human origin. Eur J Immunol. 1999 May;29(5):1701–1708. doi: 10.1002/(SICI)1521-4141(199905)29:05<1701::AID-IMMU1701>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  13. Karaca K., Naqi S. Characterization of a novel monoclonal antibody which identifies chicken secretory component. Hybridoma. 1997 Dec;16(6):545–550. doi: 10.1089/hyb.1997.16.545. [DOI] [PubMed] [Google Scholar]
  14. Krajci P., Kvale D., Taskén K., Brandtzaeg P. Molecular cloning and exon-intron mapping of the gene encoding human transmembrane secretory component (the poly-Ig receptor) Eur J Immunol. 1992 Sep;22(9):2309–2315. doi: 10.1002/eji.1830220920. [DOI] [PubMed] [Google Scholar]
  15. Kulseth M. A., Krajci P., Myklebost O., Rogne S. Cloning and characterization of two forms of bovine polymeric immunoglobulin receptor cDNA. DNA Cell Biol. 1995 Mar;14(3):251–256. doi: 10.1089/dna.1995.14.251. [DOI] [PubMed] [Google Scholar]
  16. Lebacq-Verheyden A. M., Vaerman J. P., Heremans J. F. A possible homologue of mammalian IgA in chicken serum and secretions. Immunology. 1972 Jan;22(1):165–175. [PMC free article] [PubMed] [Google Scholar]
  17. Luton F., Mostov K. E. Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. Mol Biol Cell. 1999 May;10(5):1409–1427. doi: 10.1091/mbc.10.5.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Macfarlane G. T., Cummings J. H. Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? West J Med. 1999 Sep;171(3):187–191. [PMC free article] [PubMed] [Google Scholar]
  19. Mansikka A. Chicken IgA H chains. Implications concerning the evolution of H chain genes. J Immunol. 1992 Aug 1;149(3):855–861. [PubMed] [Google Scholar]
  20. Martín M. G., Gutierrez E. M., Lam J. T., Li T. W., Wang J. Genomic cloning and structural analysis of the murine polymeric receptor (pIgR) gene and promoter region. Gene. 1997 Nov 12;201(1-2):189–197. doi: 10.1016/s0378-1119(97)00447-2. [DOI] [PubMed] [Google Scholar]
  21. Mussmann R., Du Pasquier L., Hsu E. Is Xenopus IgX an analog of IgA? Eur J Immunol. 1996 Dec;26(12):2823–2830. doi: 10.1002/eji.1830261205. [DOI] [PubMed] [Google Scholar]
  22. Peppard J. V., Hobbs S. M., Jackson L. E., Rose M. E., Mockett A. P. Biochemical characterization of chicken secretory component. Eur J Immunol. 1986 Mar;16(3):225–229. doi: 10.1002/eji.1830160303. [DOI] [PubMed] [Google Scholar]
  23. Phalipon Armelle, Cardona Ana, Kraehenbuhl Jean Pierre, Edelman Léna, Sansonetti Philippe J., Corthésy Blaise. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity. 2002 Jul;17(1):107–115. doi: 10.1016/s1074-7613(02)00341-2. [DOI] [PubMed] [Google Scholar]
  24. Piskurich J. F., Blanchard M. H., Youngman K. R., France J. A., Kaetzel C. S. Molecular cloning of the mouse polymeric Ig receptor. Functional regions of the molecule are conserved among five mammalian species. J Immunol. 1995 Feb 15;154(4):1735–1747. [PubMed] [Google Scholar]
  25. Rose M. E., Orlans E., Payne A. W., Hesketh P. The origin of IgA in chicken bile: its rapid active transport from blood. Eur J Immunol. 1981 Jul;11(7):561–564. doi: 10.1002/eji.1830110708. [DOI] [PubMed] [Google Scholar]
  26. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  27. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shibuya A., Sakamoto N., Shimizu Y., Shibuya K., Osawa M., Hiroyama T., Eyre H. J., Sutherland G. R., Endo Y., Fujita T. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol. 2000 Nov;1(5):441–446. doi: 10.1038/80886. [DOI] [PubMed] [Google Scholar]
  29. Shimizu Y., Honda S., Yotsumoto K., Tahara-Hanaoka S., Eyre H. J., Sutherland G. R., Endo Y., Shibuya K., Koyama A., Nakauchi H. Fc(alpha)/mu receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on Chromosome 1. Immunogenetics. 2001 Oct 24;53(8):709–711. doi: 10.1007/s00251-001-0375-y. [DOI] [PubMed] [Google Scholar]
  30. Tamer C. M., Lamm M. E., Robinson J. K., Piskurich J. F., Kaetzel C. S. Comparative studies of transcytosis and assembly of secretory IgA in Madin-Darby canine kidney cells expressing human polymeric Ig receptor. J Immunol. 1995 Jul 15;155(2):707–714. [PubMed] [Google Scholar]
  31. Tatusova T. A., Madden T. L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999 May 15;174(2):247–250. doi: 10.1111/j.1574-6968.1999.tb13575.x. [DOI] [PubMed] [Google Scholar]
  32. Tomasi T. B., Jr, Bienenstock J. Secretory immunoglobulins. Adv Immunol. 1968;9:1–96. doi: 10.1016/s0065-2776(08)60441-1. [DOI] [PubMed] [Google Scholar]
  33. Underdown B. J., Switzer I., Jackson G. D. Rat secretory component binds poorly to rodent IgM. J Immunol. 1992 Jul 15;149(2):487–491. [PubMed] [Google Scholar]
  34. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES