Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):749–756. doi: 10.1042/BJ20040031

Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D.

Yong-Xin Sun 1, Kazuhito Tsuboi 1, Yasuo Okamoto 1, Takeharu Tonai 1, Makoto Murakami 1, Ichiro Kudo 1, Natsuo Ueda 1
PMCID: PMC1224205  PMID: 14998370

Abstract

Anandamide (an endocannabinoid) and other bioactive long-chain NAEs (N-acylethanolamines) are formed by direct release from N-acyl-PE (N-acyl-phosphatidylethanolamine) by a PLD (phospholipase D). However, the possible presence of a two-step pathway from N-acyl-PE has also been suggested previously, which comprises (1) the hydrolysis of N-acyl-PE to N-acyl-lysoPE by PLA1/PLA2 enzyme(s) and (2) the release of NAEs from N-acyllysoPE by lysoPLD (lysophospholipase D) enzyme(s). In the present study we report for the first time the characterization of enzymes responsible for this pathway. The PLA1/PLA2 activity for N-palmitoyl-PE was found in various rat tissues, with the highest activity in the stomach. This stomach enzyme was identified as group IB sPLA2 (secretory PLA2), and its product was determined as N-acyl-1-acyl-lysoPE. Recombinant group IB, IIA and V of sPLA2s were also active with N-palmitoyl-PE, whereas group X sPLA2 and cytosolic PLA2a were inactive. In addition, we found wide distribution of lysoPLD activity generating N-palmitoylethanolamine from N-palmitoyl-lysoPE in rat tissues, with higher activities in the brain and testis. Based on several lines of enzymological evidence, the lysoPLD enzyme could be distinct from the known N-acyl-PE-hydrolysing PLD. sPLA2-IB dose dependently enhanced the production of N-palmitoylethanolamine from N-palmitoyl-PE in the brain homogenate showing the lysoPLD activity. N-Arachidonoyl-PE and N-arachidonoyl-lysoPE as anandamide precursors were also good substrates of sPLA2-IB and the lysoPLD respectively. These results suggest that the sequential actions of PLA2 and lysoPLD may constitute another biosynthetic pathway for NAEs, including anandamide.

Full Text

The Full Text of this article is available as a PDF (245.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., Kudo I. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation. J Biol Chem. 1998 May 29;273(22):13870–13877. doi: 10.1074/jbc.273.22.13870. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Calignano A., La Rana G., Giuffrida A., Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature. 1998 Jul 16;394(6690):277–281. doi: 10.1038/28393. [DOI] [PubMed] [Google Scholar]
  4. Calignano A., La Rana G., Piomelli D. Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur J Pharmacol. 2001 May 11;419(2-3):191–198. doi: 10.1016/s0014-2999(01)00988-8. [DOI] [PubMed] [Google Scholar]
  5. De Petrocellis L., Melck D., Bisogno T., Di Marzo V. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem Phys Lipids. 2000 Nov;108(1-2):191–209. doi: 10.1016/s0009-3084(00)00196-1. [DOI] [PubMed] [Google Scholar]
  6. Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. doi: 10.1126/science.1470919. [DOI] [PubMed] [Google Scholar]
  7. Di Marzo V. 'Endocannabinoids' and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta. 1998 Jun 15;1392(2-3):153–175. doi: 10.1016/s0005-2760(98)00042-3. [DOI] [PubMed] [Google Scholar]
  8. Di Marzo V., Fontana A., Cadas H., Schinelli S., Cimino G., Schwartz J. C., Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994 Dec 15;372(6507):686–691. doi: 10.1038/372686a0. [DOI] [PubMed] [Google Scholar]
  9. Di Marzo Vincenzo, De Petrocellis L., Fezza F., Ligresti A., Bisogno T. Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):377–391. doi: 10.1054/plef.2001.0349. [DOI] [PubMed] [Google Scholar]
  10. Epps D. E., Schmid P. C., Natarajan V., Schmid H. H. N-Acylethanolamine accumulation in infarcted myocardium. Biochem Biophys Res Commun. 1979 Sep 27;90(2):628–633. doi: 10.1016/0006-291x(79)91281-6. [DOI] [PubMed] [Google Scholar]
  11. Fu Jin, Gaetani Silvana, Oveisi Fariba, Lo Verme Jesse, Serrano Antonia, Rodríguez De Fonseca Fernando, Rosengarth Anja, Luecke Hartmut, Di Giacomo Barbara, Tarzia Giorgio. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003 Sep 4;425(6953):90–93. doi: 10.1038/nature01921. [DOI] [PubMed] [Google Scholar]
  12. Hansen H. S., Lauritzen L., Strand A. M., Moesgaard B., Frandsen A. Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cortical neurons in culture. Biochim Biophys Acta. 1995 Oct 5;1258(3):303–308. doi: 10.1016/0005-2760(95)00134-x. [DOI] [PubMed] [Google Scholar]
  13. Hansen H. S., Moesgaard B., Hansen H. H., Petersen G. N-Acylethanolamines and precursor phospholipids - relation to cell injury. Chem Phys Lipids. 2000 Nov;108(1-2):135–150. doi: 10.1016/s0009-3084(00)00192-4. [DOI] [PubMed] [Google Scholar]
  14. Ishizaki J., Suzuki N., Higashino K., Yokota Y., Ono T., Kawamoto K., Fujii N., Arita H., Hanasaki K. Cloning and characterization of novel mouse and human secretory phospholipase A(2)s. J Biol Chem. 1999 Aug 27;274(35):24973–24979. doi: 10.1074/jbc.274.35.24973. [DOI] [PubMed] [Google Scholar]
  15. Kondo S., Sugiura T., Kodaka T., Kudo N., Waku K., Tokumura A. Accumulation of various N-acylethanolamines including N-arachidonoylethanolamine (anandamide) in cadmium chloride-administered rat testis. Arch Biochem Biophys. 1998 Jun 15;354(2):303–310. doi: 10.1006/abbi.1998.0688. [DOI] [PubMed] [Google Scholar]
  16. Kudo Ichiro, Murakami Makoto. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:3–58. doi: 10.1016/s0090-6980(02)00020-5. [DOI] [PubMed] [Google Scholar]
  17. Lambert Didier M., Vandevoorde Severine, Jonsson Kent-Olov, Fowler Christopher J. The palmitoylethanolamide family: a new class of anti-inflammatory agents? Curr Med Chem. 2002 Mar;9(6):663–674. doi: 10.2174/0929867023370707. [DOI] [PubMed] [Google Scholar]
  18. Liu Qian, Tonai Takeharu, Ueda Natsuo. Activation of N-acylethanolamine-releasing phospholipase D by polyamines. Chem Phys Lipids. 2002 May;115(1-2):77–84. doi: 10.1016/s0009-3084(02)00015-4. [DOI] [PubMed] [Google Scholar]
  19. Maccarrone Mauro, Pauselli Riccardo, Di Rienzo Marianna, Finazzi-Agrò Alessandro. Binding, degradation and apoptotic activity of stearoylethanolamide in rat C6 glioma cells. Biochem J. 2002 Aug 15;366(Pt 1):137–144. doi: 10.1042/BJ20020438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mills Gordon B., Moolenaar Wouter H. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003 Aug;3(8):582–591. doi: 10.1038/nrc1143. [DOI] [PubMed] [Google Scholar]
  21. Murakami M., Kambe T., Shimbara S., Higashino K., Hanasaki K., Arita H., Horiguchi M., Arita M., Arai H., Inoue K. Different functional aspects of the group II subfamily (Types IIA and V) and type X secretory phospholipase A(2)s in regulating arachidonic acid release and prostaglandin generation. Implications of cyclooxygenase-2 induction and phospholipid scramblase-mediated cellular membrane perturbation. J Biol Chem. 1999 Oct 29;274(44):31435–31444. doi: 10.1074/jbc.274.44.31435. [DOI] [PubMed] [Google Scholar]
  22. Murakami M., Kambe T., Shimbara S., Kudo I. Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem. 1999 Jan 29;274(5):3103–3115. doi: 10.1074/jbc.274.5.3103. [DOI] [PubMed] [Google Scholar]
  23. Murakami M., Koduri R. S., Enomoto A., Shimbara S., Seki M., Yoshihara K., Singer A., Valentin E., Ghomashchi F., Lambeau G. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem. 2000 Dec 5;276(13):10083–10096. doi: 10.1074/jbc.M007877200. [DOI] [PubMed] [Google Scholar]
  24. Murakami M., Nakatani Y., Kudo I. Type II secretory phospholipase A2 associated with cell surfaces via C-terminal heparin-binding lysine residues augments stimulus-initiated delayed prostaglandin generation. J Biol Chem. 1996 Nov 22;271(47):30041–30051. doi: 10.1074/jbc.271.47.30041. [DOI] [PubMed] [Google Scholar]
  25. Murakami M., Shimbara S., Kambe T., Kuwata H., Winstead M. V., Tischfield J. A., Kudo I. The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem. 1998 Jun 5;273(23):14411–14423. doi: 10.1074/jbc.273.23.14411. [DOI] [PubMed] [Google Scholar]
  26. Murakami Makoto, Kudo Ichiro. Phospholipase A2. J Biochem. 2002 Mar;131(3):285–292. doi: 10.1093/oxfordjournals.jbchem.a003101. [DOI] [PubMed] [Google Scholar]
  27. Nakatani Y., Tanioka T., Sunaga S., Murakami M., Kudo I. Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic phospholipase A(2)alpha. J Biol Chem. 2000 Jan 14;275(2):1161–1168. doi: 10.1074/jbc.275.2.1161. [DOI] [PubMed] [Google Scholar]
  28. Natarajan V., Schmid P. C., Reddy P. V., Schmid H. H. Catabolism of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem. 1984 Jun;42(6):1613–1619. doi: 10.1111/j.1471-4159.1984.tb12750.x. [DOI] [PubMed] [Google Scholar]
  29. Ohara O., Tamaki M., Nakamura E., Tsuruta Y., Fujii Y., Shin M., Teraoka H., Okamoto M. Dog and rat pancreatic phospholipases A2: complete amino acid sequences deduced from complementary DNAs. J Biochem. 1986 Mar;99(3):733–739. doi: 10.1093/oxfordjournals.jbchem.a135532. [DOI] [PubMed] [Google Scholar]
  30. Okamoto Yasuo, Morishita Jun, Tsuboi Kazuhito, Tonai Takeharu, Ueda Natsuo. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2003 Nov 21;279(7):5298–5305. doi: 10.1074/jbc.M306642200. [DOI] [PubMed] [Google Scholar]
  31. Petersen G., Chapman K. D., Hansen H. S. A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids: application to n-acylethanolamine formation in vitro. J Lipid Res. 2000 Sep;41(9):1532–1538. [PubMed] [Google Scholar]
  32. Petersen G., Hansen H. S. N-acylphosphatidylethanolamine-hydrolysing phospholipase D lacks the ability to transphosphatidylate. FEBS Lett. 1999 Jul 16;455(1-2):41–44. doi: 10.1016/s0014-5793(99)00861-3. [DOI] [PubMed] [Google Scholar]
  33. Rodríguez de Fonseca F., Navarro M., Gómez R., Escuredo L., Nava F., Fu J., Murillo-Rodríguez E., Giuffrida A., LoVerme J., Gaetani S. An anorexic lipid mediator regulated by feeding. Nature. 2001 Nov 8;414(6860):209–212. doi: 10.1038/35102582. [DOI] [PubMed] [Google Scholar]
  34. Sakata T., Nakamura E., Tsuruta Y., Tamaki M., Teraoka H., Tojo H., Ono T., Okamoto M. Presence of pancreatic-type phospholipase A2 mRNA in rat gastric mucosa and lung. Biochim Biophys Acta. 1989 Jan 23;1007(1):124–126. doi: 10.1016/0167-4781(89)90141-3. [DOI] [PubMed] [Google Scholar]
  35. Schmid H. H. O., Berdyshev E. V. Cannabinoid receptor-inactive N-acylethanolamines and other fatty acid amides: metabolism and function. Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):363–376. doi: 10.1054/plef.2001.0348. [DOI] [PubMed] [Google Scholar]
  36. Schmid H. H. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids. 2000 Nov;108(1-2):71–87. doi: 10.1016/s0009-3084(00)00188-2. [DOI] [PubMed] [Google Scholar]
  37. Schmid H. H., Schmid P. C., Natarajan V. N-acylated glycerophospholipids and their derivatives. Prog Lipid Res. 1990;29(1):1–43. doi: 10.1016/0163-7827(90)90004-5. [DOI] [PubMed] [Google Scholar]
  38. Schmid P. C., Krebsbach R. J., Perry S. R., Dettmer T. M., Maasson J. L., Schmid H. H. Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Lett. 1995 Nov 13;375(1-2):117–120. doi: 10.1016/0014-5793(95)01194-j. [DOI] [PubMed] [Google Scholar]
  39. Schmid P. C., Reddy P. V., Natarajan V., Schmid H. H. Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem. 1983 Aug 10;258(15):9302–9306. [PubMed] [Google Scholar]
  40. Six D. A., Dennis E. A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000 Oct 31;1488(1-2):1–19. doi: 10.1016/s1388-1981(00)00105-0. [DOI] [PubMed] [Google Scholar]
  41. Stracke M. L., Clair T., Liotta L. A. Autotaxin, tumor motility-stimulating exophosphodiesterase. Adv Enzyme Regul. 1997;37:135–144. doi: 10.1016/s0065-2571(96)00017-9. [DOI] [PubMed] [Google Scholar]
  42. Sugiura T., Kobayashi Y., Oka S., Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):173–192. doi: 10.1054/plef.2001.0356. [DOI] [PubMed] [Google Scholar]
  43. Sugiura T., Kondo S., Sukagawa A., Tonegawa T., Nakane S., Yamashita A., Ishima Y., Waku K. Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem. 1996 Aug 15;240(1):53–62. doi: 10.1111/j.1432-1033.1996.0053h.x. [DOI] [PubMed] [Google Scholar]
  44. Tokumura Akira, Majima Eiji, Kariya Yuko, Tominaga Kyoko, Kogure Kentaro, Yasuda Katsuhiko, Fukuzawa Kenji. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem. 2002 Aug 9;277(42):39436–39442. doi: 10.1074/jbc.M205623200. [DOI] [PubMed] [Google Scholar]
  45. Ueda N., Liu Q., Yamanaka K. Marked activation of the N-acylphosphatidylethanolamine-hydrolyzing phosphodiesterase by divalent cations. Biochim Biophys Acta. 2001 May 31;1532(1-2):121–127. doi: 10.1016/s1388-1981(01)00120-2. [DOI] [PubMed] [Google Scholar]
  46. Umezu-Goto Makiko, Kishi Yasuhiro, Taira Akitsu, Hama Kotaro, Dohmae Naoshi, Takio Koji, Yamori Takao, Mills Gordon B., Inoue Keizo, Aoki Junken. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol. 2002 Jul 15;158(2):227–233. doi: 10.1083/jcb.200204026. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES