Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):723–733. doi: 10.1042/BJ20031789

Interaction(s) of rotavirus non-structural protein 4 (NSP4) C-terminal peptides with model membranes.

Huan Huang 1, Friedhelm Schroeder 1, Mary K Estes 1, Tanya McPherson 1, Judith M Ball 1
PMCID: PMC1224213  PMID: 15012630

Abstract

Rotavirus is the major cause of dehydrating gastroenteritis in children and young animals. NSP4 (non-structural protein 4), a rotaviral non-structural glycoprotein and a peptide NSP4(114-135) (DKLTTREIEQVELLKRIYDKLT), corresponding to NSP4 amino acids 114-135, induce diarrhoeal disease in a neonatal mouse model and interact with model membranes that mimic caveolae. Correlation of the mechanisms of diarrhoea induction and membrane interactions by NSP4 protein and peptide remain unclear. Several additional NSP4 peptides were synthesized and their interactions with membranes studied by (i) CD, (ii) a filtration-binding assay and (iii) a fluorescent molecule leakage assay. Model membranes that varied in lipid compositions and radius of curvature were utilized to determine the compositional and structural requirements for optimal interaction with the peptides of NSP4. Similar to the intact protein and NSP4(114-135), peptides overlapping residues 114-135 had significantly higher affinities to membranes rich in negatively charged lipids, rich in cholesterol and with a high radius of curvature. In the leakage assay, small and large unilamellar vesicles loaded with the fluorophore/quencher pair 8-aminonaphthalene-1,3,6-trisulphonic acid disodium salt/p -xylene-bis-pyridinium bromide were incubated with the NSP4 peptides and monitored for membrane disruption by lipid reorganization or by pore formation. At a peptide concentration of 15 microM, none of the NSP4 peptides caused leakage. These results confirm that NSP4 interacts with caveolae-like membranes and the alpha-helical region of NSP4(114-135) comprises a membrane interaction domain that does not induce membrane disruption at physiological concentrations.

Full Text

The Full Text of this article is available as a PDF (499.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  2. Au K. S., Mattion N. M., Estes M. K. A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology. 1993 Jun;194(2):665–673. doi: 10.1006/viro.1993.1306. [DOI] [PubMed] [Google Scholar]
  3. Ball J. M., Tian P., Zeng C. Q., Morris A. P., Estes M. K. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science. 1996 Apr 5;272(5258):101–104. doi: 10.1126/science.272.5258.101. [DOI] [PubMed] [Google Scholar]
  4. Berden J. A., Barker R. W., Radda G. K. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution. Biochim Biophys Acta. 1975 Jan 28;375(2):186–208. doi: 10.1016/0005-2736(75)90188-1. [DOI] [PubMed] [Google Scholar]
  5. Bergmann C. C., Maass D., Poruchynsky M. S., Atkinson P. H., Bellamy A. R. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J. 1989 Jun;8(6):1695–1703. doi: 10.1002/j.1460-2075.1989.tb03561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Both G. W., Siegman L. J., Bellamy A. R., Atkinson P. H. Coding assignment and nucleotide sequence of simian rotavirus SA11 gene segment 10: location of glycosylation sites suggests that the signal peptide is not cleaved. J Virol. 1983 Nov;48(2):335–339. doi: 10.1128/jvi.48.2.335-339.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bowman G. D., Nodelman I. M., Levy O., Lin S. L., Tian P., Zamb T. J., Udem S. A., Venkataraghavan B., Schutt C. E. Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J Mol Biol. 2000 Dec 15;304(5):861–871. doi: 10.1006/jmbi.2000.4250. [DOI] [PubMed] [Google Scholar]
  8. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  9. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  10. Dong Y., Zeng C. Q., Ball J. M., Estes M. K., Morris A. P. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3960–3965. doi: 10.1073/pnas.94.8.3960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Estes M. K., Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989 Dec;53(4):410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halaihel N., Liévin V., Ball J. M., Estes M. K., Alvarado F., Vasseur M. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane. J Virol. 2000 Oct;74(20):9464–9470. doi: 10.1128/jvi.74.20.9464-9470.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ho M. S., Glass R. I., Pinsky P. F., Anderson L. J. Rotavirus as a cause of diarrheal morbidity and mortality in the United States. J Infect Dis. 1988 Nov;158(5):1112–1116. doi: 10.1093/infdis/158.5.1112. [DOI] [PubMed] [Google Scholar]
  14. Huang H., Schroeder F., Zeng C., Estes M. K., Schoer J. K., Ball J. M. Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4. Biochemistry. 2001 Apr 3;40(13):4169–4180. doi: 10.1021/bi002346s. [DOI] [PubMed] [Google Scholar]
  15. Johnson J. E., Rao N. M., Hui S. W., Cornell R. B. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry. 1998 Jun 30;37(26):9509–9519. doi: 10.1021/bi980340l. [DOI] [PubMed] [Google Scholar]
  16. Kapikian A. Z. Overview of viral gastroenteritis. Arch Virol Suppl. 1996;12:7–19. doi: 10.1007/978-3-7091-6553-9_2. [DOI] [PubMed] [Google Scholar]
  17. Kneller D. G., Cohen F. E., Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990 Jul 5;214(1):171–182. doi: 10.1016/0022-2836(90)90154-E. [DOI] [PubMed] [Google Scholar]
  18. Lentz B. R., McIntyre G. F., Parks D. J., Yates J. C., Massenburg D. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry. 1992 Mar 17;31(10):2643–2653. doi: 10.1021/bi00125a003. [DOI] [PubMed] [Google Scholar]
  19. Li H., Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998 Dec;139(12):4991–4997. doi: 10.1210/endo.139.12.6390. [DOI] [PubMed] [Google Scholar]
  20. Lin Shuo Liang, Tian Peng. Detailed computational analysis of a comprehensive set of group A rotavirus NSP4 proteins. Virus Genes. 2003 May;26(3):271–282. doi: 10.1023/a:1024451314534. [DOI] [PubMed] [Google Scholar]
  21. Litman B. J. Lipid model membranes. Characterization of mixed phospholipid vesicles. Biochemistry. 1973 Jun 19;12(13):2545–2554. doi: 10.1021/bi00737a028. [DOI] [PubMed] [Google Scholar]
  22. Machida K., Ohnishi S. I. Effect of bilayer membrane curvature on activity of phosphatidylcholine exchange protein. Biochim Biophys Acta. 1980 Feb 28;596(2):201–209. doi: 10.1016/0005-2736(80)90355-7. [DOI] [PubMed] [Google Scholar]
  23. Mirazimi A., Nilsson M., Svensson L. The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro. J Virol. 1998 Nov;72(11):8705–8709. doi: 10.1128/jvi.72.11.8705-8709.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morris A. P., Scott J. K., Ball J. M., Zeng C. Q., O'Neal W. K., Estes M. K. NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. Am J Physiol. 1999 Aug;277(2 Pt 1):G431–G444. doi: 10.1152/ajpgi.1999.277.2.G431. [DOI] [PubMed] [Google Scholar]
  25. Morris A. P., Scott J. K., Ball J. M., Zeng C. Q., O'Neal W. K., Estes M. K. NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. Am J Physiol. 1999 Aug;277(2 Pt 1):G431–G444. doi: 10.1152/ajpgi.1999.277.2.G431. [DOI] [PubMed] [Google Scholar]
  26. Nordlund J. R., Schmidt C. F., Dicken S. N., Thompson T. E. Transbilayer distribution of phosphatidylethanolamine in large and small unilamellar vesicles. Biochemistry. 1981 May 26;20(11):3237–3241. doi: 10.1021/bi00514a039. [DOI] [PubMed] [Google Scholar]
  27. Parton R. G. Caveolae and caveolins. Curr Opin Cell Biol. 1996 Aug;8(4):542–548. doi: 10.1016/s0955-0674(96)80033-0. [DOI] [PubMed] [Google Scholar]
  28. Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
  29. Sapin Catherine, Colard Odile, Delmas Olivier, Tessier Cedric, Breton Michelyne, Enouf Vincent, Chwetzoff Serge, Ouanich Jocelyne, Cohen Jean, Wolf Claude. Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol. 2002 May;76(9):4591–4602. doi: 10.1128/JVI.76.9.4591-4602.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suzuki H. A hypothesis about the mechanism of assembly of double-shelled rotavirus particles. Arch Virol Suppl. 1996;12:79–85. doi: 10.1007/978-3-7091-6553-9_9. [DOI] [PubMed] [Google Scholar]
  31. Swaggerty C. L., Frolov A. A., McArthur M. J., Cox V. W., Tong S., Compans R. W., Ball J. M. The envelope glycoprotein of simian immunodeficiency virus contains an enterotoxin domain. Virology. 2000 Nov 25;277(2):250–261. doi: 10.1006/viro.2000.0626. [DOI] [PubMed] [Google Scholar]
  32. Talbot W. A., Zheng L. X., Lentz B. R. Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion. Biochemistry. 1997 May 13;36(19):5827–5836. doi: 10.1021/bi962437i. [DOI] [PubMed] [Google Scholar]
  33. Taylor J. A., O'Brien J. A., Lord V. J., Meyer J. C., Bellamy A. R. The RER-localized rotavirus intracellular receptor: a truncated purified soluble form is multivalent and binds virus particles. Virology. 1993 Jun;194(2):807–814. doi: 10.1006/viro.1993.1322. [DOI] [PubMed] [Google Scholar]
  34. Taylor J. A., O'Brien J. A., Yeager M. The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J. 1996 Sep 2;15(17):4469–4476. [PMC free article] [PubMed] [Google Scholar]
  35. Tian P., Ball J. M., Zeng C. Q., Estes M. K. Rotavirus protein expression is important for virus assembly and pathogenesis. Arch Virol Suppl. 1996;12:69–77. doi: 10.1007/978-3-7091-6553-9_8. [DOI] [PubMed] [Google Scholar]
  36. Tian P., Ball J. M., Zeng C. Q., Estes M. K. The rotavirus nonstructural glycoprotein NSP4 possesses membrane destabilization activity. J Virol. 1996 Oct;70(10):6973–6981. doi: 10.1128/jvi.70.10.6973-6981.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tian P., Estes M. K., Hu Y., Ball J. M., Zeng C. Q., Schilling W. P. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol. 1995 Sep;69(9):5763–5772. doi: 10.1128/jvi.69.9.5763-5772.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vaccaro A. M., Tatti M., Ciaffoni F., Salvioli R., Barca A., Roncaioli P. Studies on glucosylceramidase binding to phosphatidylserine liposomes: the role of bilayer curvature. Biochim Biophys Acta. 1993 Jun 18;1149(1):55–62. doi: 10.1016/0005-2736(93)90024-t. [DOI] [PubMed] [Google Scholar]
  39. Wachtel E. J., Bach D. X-ray diffraction study of cholesterol-phosphatidylserine mixtures. Biochim Biophys Acta. 1987 Nov 21;922(2):234–238. doi: 10.1016/0005-2760(87)90159-7. [DOI] [PubMed] [Google Scholar]
  40. Xu A., Bellamy A. R., Taylor J. A. BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion component. J Virol. 1998 Dec;72(12):9865–9872. doi: 10.1128/jvi.72.12.9865-9872.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang M., Zeng C. Q., Morris A. P., Estes M. K. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol. 2000 Dec;74(24):11663–11670. doi: 10.1128/jvi.74.24.11663-11670.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES