Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):677–684. doi: 10.1042/BJ20031876

Theoretical model of the three-dimensional structure of a sugar-binding protein from Pyrococcus horikoshii: structural analysis and sugar-binding simulations.

Anna Marabotti 1, Sabato D'Auria 1, Mosé Rossi 1, Angelo M Facchiano 1
PMCID: PMC1224218  PMID: 15015939

Abstract

The three-dimensional structure of a sugar-binding protein from the thermophilic archaea Pyrococcus horikoshii has been predicted by a homology modelling procedure and investigated for its stability and its ability to bind different sugars. The model was created by using as templates the three-dimensional structures of a maltodextrin-binding protein from Pyrococcus furiosus, a trehalose-maltose-binding protein from Thermococcus litoralis and a maltodextrin-binding protein from Escherichia coli. According to the suggestions from the CASP (Critical Assessment of Structure Prediction) meetings, the homology modelling strategy was applied by assessing an accurate multiple sequence alignment, based on the high structural conservation in the family of ATP-binding cassette transporters to which all these proteins belong. The model has been deposited in the Protein Data Bank with the code 1R25. According to the origin of the protein, several characteristics in the organization of the secondary-structure elements and in the distribution of polar and non-polar amino acids are very similar to those of thermophilic proteins, compared with proteins from mesophilic organisms, and are analysed in detail. Finally, a simulation of the binding of several sugars in the binding site of this protein is presented, and interactions with amino acids are highlighted in detail.

Full Text

The Full Text of this article is available as a PDF (640.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boeckmann Brigitte, Bairoch Amos, Apweiler Rolf, Blatter Marie-Claude, Estreicher Anne, Gasteiger Elisabeth, Martin Maria J., Michoud Karine, O'Donovan Claire, Phan Isabelle. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003 Jan 1;31(1):365–370. doi: 10.1093/nar/gkg095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danson M. J., Hough D. W. Structure, function and stability of enzymes from the Archaea. Trends Microbiol. 1998 Aug;6(8):307–314. doi: 10.1016/s0966-842x(98)01316-x. [DOI] [PubMed] [Google Scholar]
  5. Diez J., Diederichs K., Greller G., Horlacher R., Boos W., Welte W. The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic Archaeon Thermococcus litoralis at 1.85 A. J Mol Biol. 2001 Jan 26;305(4):905–915. doi: 10.1006/jmbi.2000.4203. [DOI] [PubMed] [Google Scholar]
  6. Evdokimov A. G., Anderson D. E., Routzahn K. M., Waugh D. S. Structural basis for oligosaccharide recognition by Pyrococcus furiosus maltodextrin-binding protein. J Mol Biol. 2001 Jan 26;305(4):891–904. doi: 10.1006/jmbi.2000.4202. [DOI] [PubMed] [Google Scholar]
  7. Facchiano A. M., Colonna G., Ragone R. Helix stabilizing factors and stabilization of thermophilic proteins: an X-ray based study. Protein Eng. 1998 Sep;11(9):753–760. doi: 10.1093/protein/11.9.753. [DOI] [PubMed] [Google Scholar]
  8. Facchiano A. M., Stiuso P., Chiusano M. L., Caraglia M., Giuberti G., Marra M., Abbruzzese A., Colonna G. Homology modelling of the human eukaryotic initiation factor 5A (eIF-5A). Protein Eng. 2001 Nov;14(11):881–890. doi: 10.1093/protein/14.11.881. [DOI] [PubMed] [Google Scholar]
  9. Hofmann K., Bucher P., Falquet L., Bairoch A. The PROSITE database, its status in 1999. Nucleic Acids Res. 1999 Jan 1;27(1):215–219. doi: 10.1093/nar/27.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horlacher R., Xavier K. B., Santos H., DiRuggiero J., Kossmann M., Boos W. Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol. 1998 Feb;180(3):680–689. doi: 10.1128/jb.180.3.680-689.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hubbard S. J., Campbell S. F., Thornton J. M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol. 1991 Jul 20;220(2):507–530. doi: 10.1016/0022-2836(91)90027-4. [DOI] [PubMed] [Google Scholar]
  12. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  13. Kawarabayasi Y., Sawada M., Horikawa H., Haikawa Y., Hino Y., Yamamoto S., Sekine M., Baba S., Kosugi H., Hosoyama A. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998 Apr 30;5(2):55–76. doi: 10.1093/dnares/5.2.55. [DOI] [PubMed] [Google Scholar]
  14. Koning Sonja M., Albers Sonja-Verena, Konings Wil N., Driessen Arnold J. M. Sugar transport in (hyper)thermophilic archaea. Res Microbiol. 2002 Mar;153(2):61–67. doi: 10.1016/s0923-2508(01)01289-x. [DOI] [PubMed] [Google Scholar]
  15. Korkhin Y., Kalb(Gilboa) A. J., Peretz M., Bogin O., Burstein Y., Frolow F. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol. 1998 May 22;278(5):967–981. doi: 10.1006/jmbi.1998.1750. [DOI] [PubMed] [Google Scholar]
  16. Kumar S., Tsai C. J., Nussinov R. Factors enhancing protein thermostability. Protein Eng. 2000 Mar;13(3):179–191. doi: 10.1093/protein/13.3.179. [DOI] [PubMed] [Google Scholar]
  17. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  19. Orengo C. A., Michie A. D., Jones S., Jones D. T., Swindells M. B., Thornton J. M. CATH--a hierarchic classification of protein domain structures. Structure. 1997 Aug 15;5(8):1093–1108. doi: 10.1016/s0969-2126(97)00260-8. [DOI] [PubMed] [Google Scholar]
  20. Quiocho F. A. Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem. 1986;55:287–315. doi: 10.1146/annurev.bi.55.070186.001443. [DOI] [PubMed] [Google Scholar]
  21. Quiocho F. A., Spurlino J. C., Rodseth L. E. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure. 1997 Aug 15;5(8):997–1015. doi: 10.1016/s0969-2126(97)00253-0. [DOI] [PubMed] [Google Scholar]
  22. Rodriguez R., Chinea G., Lopez N., Pons T., Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics. 1998;14(6):523–528. doi: 10.1093/bioinformatics/14.6.523. [DOI] [PubMed] [Google Scholar]
  23. Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
  24. Rost B., Schneider R., Sander C. Protein fold recognition by prediction-based threading. J Mol Biol. 1997 Jul 18;270(3):471–480. doi: 10.1006/jmbi.1997.1101. [DOI] [PubMed] [Google Scholar]
  25. Rost B. TOPITS: threading one-dimensional predictions into three-dimensional structures. Proc Int Conf Intell Syst Mol Biol. 1995;3:314–321. [PubMed] [Google Scholar]
  26. Saier M. H., Jr Families of transmembrane sugar transport proteins. Mol Microbiol. 2000 Feb;35(4):699–710. doi: 10.1046/j.1365-2958.2000.01759.x. [DOI] [PubMed] [Google Scholar]
  27. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thornton J. M. From genome to function. Science. 2001 Jun 15;292(5524):2095–2097. doi: 10.1126/science.292.5524.2095. [DOI] [PubMed] [Google Scholar]
  30. Tramontano A. Homology modeling with low sequence identity. Methods. 1998 Mar;14(3):293–300. doi: 10.1006/meth.1998.0585. [DOI] [PubMed] [Google Scholar]
  31. Venclovas C., Zemla A., Fidelis K., Moult J. Comparison of performance in successive CASP experiments. Proteins. 2001;Suppl 5:163–170. doi: 10.1002/prot.10053. [DOI] [PubMed] [Google Scholar]
  32. Venclovas Ceslovas. Comparative modeling in CASP5: progress is evident, but alignment errors remain a significant hindrance. Proteins. 2003;53 (Suppl 6):380–388. doi: 10.1002/prot.10591. [DOI] [PubMed] [Google Scholar]
  33. Vogt G., Woell S., Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol. 1997 Jun 20;269(4):631–643. doi: 10.1006/jmbi.1997.1042. [DOI] [PubMed] [Google Scholar]
  34. Westhead D. R., Thornton J. M. Protein structure prediction. Curr Opin Biotechnol. 1998 Aug;9(4):383–389. doi: 10.1016/s0958-1669(98)80012-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES