Abstract
Limitation of lifespan in replicative senescence is related to oxidative stress, which is probably both the cause and consequence of impaired mitochondrial respiratory function. The respiration of senescent human diploid fibroblasts was analysed by high-resolution respirometry. To rule out cell-cycle effects, proliferating and growth-arrested young fibroblasts were used as controls. Uncoupled respiration, as normalized to citrate synthase activity, remained unchanged, reflecting a constant capacity of the respiratory chain. Oligomycin-inhibited respiration, however, was significantly increased in mitochondria of senescent cells, indicating a lower coupling of electron transport with phosphorylation. In contrast, growth-arrested young fibroblasts exhibited a higher coupling state compared with proliferating controls. In intact cells, partial uncoupling may lead to either decreased oxidative ATP production or a compensatory increase in routine respiration. To distinguish between these alternatives, we subtracted oligomycin-inhibited respiration from routine respiration, which allowed us to determine the part of respiratory activity coupled with ATP production. Despite substantial differences in the respiratory control ratio, ranging from 4 to 11 in the different experimental groups, a fixed proportion of respiratory capacity was maintained for coupled oxidative phosphorylation in all the experimental groups. This finding indicates that the senescent cells fully compensate for increased proton leakage by enhanced electron-transport activity in the routine state. These results provide a new insight into age-associated defects in mitochondrial function and compensatory mechanisms in intact cells.
Full Text
The Full Text of this article is available as a PDF (801.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernardi P., Scorrano L., Colonna R., Petronilli V., Di Lisa F. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem. 1999 Sep;264(3):687–701. doi: 10.1046/j.1432-1327.1999.00725.x. [DOI] [PubMed] [Google Scholar]
- Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr. 1997 Aug;29(4):355–364. doi: 10.1023/a:1022498714522. [DOI] [PubMed] [Google Scholar]
- Cottrell D. A., Blakely E. L., Johnson M. A., Borthwick G. M., Ince P. I., Turnbull D. M. Mitochondrial DNA mutations in disease and ageing. Novartis Found Symp. 2001;235:234–246. doi: 10.1002/0470868694.ch19. [DOI] [PubMed] [Google Scholar]
- Cottrell D. A., Blakely E. L., Johnson M. A., Ince P. G., Turnbull D. M. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology. 2001 Jul 24;57(2):260–264. doi: 10.1212/wnl.57.2.260. [DOI] [PubMed] [Google Scholar]
- Dimri G. P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E. E., Linskens M., Rubelj I., Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363–9367. doi: 10.1073/pnas.92.20.9363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulloo A. G., Samec S. Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr. 2001 Aug;86(2):123–139. doi: 10.1079/bjn2001412. [DOI] [PubMed] [Google Scholar]
- Dürst M., Dzarlieva-Petrusevska R. T., Boukamp P., Fusenig N. E., Gissmann L. Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene. 1987;1(3):251–256. [PubMed] [Google Scholar]
- Echtay Karim S., Murphy Michael P., Smith Robin A. J., Talbot Darren A., Brand Martin D. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem. 2002 Oct 7;277(49):47129–47135. doi: 10.1074/jbc.M208262200. [DOI] [PubMed] [Google Scholar]
- Feuers R. J. The effects of dietary restriction on mitochondrial dysfunction in aging. Ann N Y Acad Sci. 1998 Nov 20;854:192–201. doi: 10.1111/j.1749-6632.1998.tb09902.x. [DOI] [PubMed] [Google Scholar]
- Floryk D., Houstek J. Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep. 1999 Feb;19(1):27–34. doi: 10.1023/a:1020193906974. [DOI] [PubMed] [Google Scholar]
- Fukami J., Anno K., Ueda K., Takahashi T., Ide T. Enhanced expression of cyclin D1 in senescent human fibroblasts. Mech Ageing Dev. 1995 Jul 14;81(2-3):139–157. doi: 10.1016/0047-6374(95)93703-6. [DOI] [PubMed] [Google Scholar]
- Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol. 2001 Nov 15;128(3):277–297. doi: 10.1016/s0034-5687(01)00307-3. [DOI] [PubMed] [Google Scholar]
- Gnaiger E., Rieger G., Kuznetsov A., Fuchs A., Stadlmann S., Lassnig B., Hengster P., Eberl T., Margreiter R. Mitochondrial ischemia-reoxygenation injury and plasma membrane integrity in human endothelial cells. Transplant Proc. 1997 Dec;29(8):3524–3526. doi: 10.1016/s0041-1345(97)01006-3. [DOI] [PubMed] [Google Scholar]
- Goldstein S., Ballantyne S. R., Robson A. L., Moerman E. J. Energy metabolism in cultured human fibroblasts during aging in vitro. J Cell Physiol. 1982 Sep;112(3):419–424. doi: 10.1002/jcp.1041120316. [DOI] [PubMed] [Google Scholar]
- Goldstein S., Korczack L. B. Status of mitochondria in living human fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123. J Cell Biol. 1981 Nov;91(2 Pt 1):392–398. doi: 10.1083/jcb.91.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein S., Moerman E. J., Porter K. High-voltage electron microscopy of human diploid fibroblasts during ageing in vitro. Morphometric analysis of mitochondria. Exp Cell Res. 1984 Sep;154(1):101–111. doi: 10.1016/0014-4827(84)90671-2. [DOI] [PubMed] [Google Scholar]
- Greco Marilena, Villani Gaetano, Mazzucchelli Franca, Bresolin Nereo, Papa Sergio, Attardi Giuseppe. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003 Jul 18;17(12):1706–1708. doi: 10.1096/fj.02-1009fje. [DOI] [PubMed] [Google Scholar]
- HARMAN D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956 Jul;11(3):298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
- Hayflick L. Aging, longevity, and immortality in vitro. Exp Gerontol. 1992 Jul-Aug;27(4):363–368. doi: 10.1016/0531-5565(92)90066-9. [DOI] [PubMed] [Google Scholar]
- Hütter Eveline, Renner Kathrin, Jansen-Dürr Pidder, Gnaiger Erich. Biphasic oxygen kinetics of cellular respiration and linear oxygen dependence of antimycin A inhibited oxygen consumption. Mol Biol Rep. 2002;29(1-2):83–87. doi: 10.1023/a:1020322922732. [DOI] [PubMed] [Google Scholar]
- Itoh K., Weis S., Mehraein P., Müller-Höcker J. Cytochrome c oxidase defects of the human substantia nigra in normal aging. Neurobiol Aging. 1996 Nov-Dec;17(6):843–848. doi: 10.1016/s0197-4580(96)00168-6. [DOI] [PubMed] [Google Scholar]
- Jacobs Howard T. The mitochondrial theory of aging: dead or alive? Aging Cell. 2003 Feb;2(1):11–17. doi: 10.1046/j.1474-9728.2003.00032.x. [DOI] [PubMed] [Google Scholar]
- Kokoszka J. E., Coskun P., Esposito L. A., Wallace D. C. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A. 2001 Feb 13;98(5):2278–2283. doi: 10.1073/pnas.051627098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kowald A. The mitochondrial theory of aging. Biol Signals Recept. 2001 May-Aug;10(3-4):162–175. doi: 10.1159/000046885. [DOI] [PubMed] [Google Scholar]
- Krtolica A., Campisi J. Integrating epithelial cancer, aging stroma and cellular senescence. Adv Gerontol. 2003;11:109–116. [PubMed] [Google Scholar]
- Kuznetsov Andrey V., Strobl Daniela, Ruttmann Elfriede, Königsrainer Alfred, Margreiter Raimund, Gnaiger Erich. Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem. 2002 Jun 15;305(2):186–194. doi: 10.1006/abio.2002.5658. [DOI] [PubMed] [Google Scholar]
- Martinez A. O., Over D., Armstrong L. S., Manzano L., Taylor R., Chambers J. Separation of two subpopulations of old human fibroblasts by mitochondria (rhodamine 123) fluorescence. Growth Dev Aging. 1991 Fall;55(3):185–191. [PubMed] [Google Scholar]
- Martinez A. O., Vara C., Castro J. Increased uptake and retention of rhodamine 123 by mitochondria of old human fibroblasts. Mech Ageing Dev. 1987 Jun;39(1):1–9. doi: 10.1016/0047-6374(87)90081-9. [DOI] [PubMed] [Google Scholar]
- Martinez A. O., Vigil A., Vila J. C. Flow-cytometric analysis of mitochondria-associated fluorescence in young and old human fibroblasts. Exp Cell Res. 1986 Jun;164(2):551–555. doi: 10.1016/0014-4827(86)90053-4. [DOI] [PubMed] [Google Scholar]
- Mather M., Rottenberg H. Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun. 2000 Jul 5;273(2):603–608. doi: 10.1006/bbrc.2000.2994. [DOI] [PubMed] [Google Scholar]
- Mathur A., Hong Y., Kemp B. K., Barrientos A. A., Erusalimsky J. D. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000 Apr;46(1):126–138. doi: 10.1016/s0008-6363(00)00002-x. [DOI] [PubMed] [Google Scholar]
- Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
- Renner Kathrin, Amberger Albert, Konwalinka Günther, Kofler Reinhard, Gnaiger Erich. Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta. 2003 Sep 23;1642(1-2):115–123. doi: 10.1016/s0167-4889(03)00105-8. [DOI] [PubMed] [Google Scholar]
- Rolfe D. F., Brown G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997 Jul;77(3):731–758. doi: 10.1152/physrev.1997.77.3.731. [DOI] [PubMed] [Google Scholar]
- Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997 Jul 7;411(1):77–82. doi: 10.1016/s0014-5793(97)00669-8. [DOI] [PubMed] [Google Scholar]
- Shay J. W., Wright W. E. Telomeres and telomerase: implications for cancer and aging. Radiat Res. 2001 Jan;155(1 Pt 2):188–193. doi: 10.1667/0033-7587(2001)155[0188:tatifc]2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Sohal R. S., Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med. 1994 May;16(5):621–626. doi: 10.1016/0891-5849(94)90062-0. [DOI] [PubMed] [Google Scholar]
- Stadlmann Sylvia, Rieger Gunde, Amberger Albert, Kuznetsov Andrey V., Margreiter Raimund, Gnaiger Erich. H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation. 2002 Dec 27;74(12):1800–1803. doi: 10.1097/00007890-200212270-00029. [DOI] [PubMed] [Google Scholar]
- Stein G. H., Dulić V. Origins of G1 arrest in senescent human fibroblasts. Bioessays. 1995 Jun;17(6):537–543. doi: 10.1002/bies.950170610. [DOI] [PubMed] [Google Scholar]
- Steinlechner-Maran R., Eberl T., Kunc M., Margreiter R., Gnaiger E. Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol. 1996 Dec;271(6 Pt 1):C2053–C2061. doi: 10.1152/ajpcell.1996.271.6.C2053. [DOI] [PubMed] [Google Scholar]
- Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
- Torres-Mendoza C. E., Albert A., de la Cruz Arriaga M. J. Molecular study of the rat liver NADH: cytochrome c oxidoreductase complex during development and ageing. Mol Cell Biochem. 1999 May;195(1-2):133–142. doi: 10.1023/a:1006983206653. [DOI] [PubMed] [Google Scholar]
- Van Remmen H., Richardson A. Oxidative damage to mitochondria and aging. Exp Gerontol. 2001 Jul;36(7):957–968. doi: 10.1016/s0531-5565(01)00093-6. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp. 2001;235:247–266. doi: 10.1002/0470868694.ch20. [DOI] [PubMed] [Google Scholar]
- Wang Wengong, Yang Xiaoling, López de Silanes Isabel, Carling David, Gorospe Myriam. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem. 2003 May 1;278(29):27016–27023. doi: 10.1074/jbc.M300318200. [DOI] [PubMed] [Google Scholar]
- Yan L. J., Sohal R. S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12896–12901. doi: 10.1073/pnas.95.22.12896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y. T., Shimabukuro M., Koyama K., Lee Y., Wang M. Y., Trieu F., Newgard C. B., Unger R. H. Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6386–6390. doi: 10.1073/pnas.94.12.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwerschke Werner, Mazurek Sybille, Stöckl Petra, Hütter Eveline, Eigenbrodt Erich, Jansen-Dürr Pidder. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J. 2003 Dec 1;376(Pt 2):403–411. doi: 10.1042/BJ20030816. [DOI] [PMC free article] [PubMed] [Google Scholar]