Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):627–633. doi: 10.1042/BJ20031861

Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence.

Daniel Rochu 1, Nathalie Viguié 1, Frédérique Renault 1, David Crouzier 1, Marie-Thérèse Froment 1, Patrick Masson 1
PMCID: PMC1224221  PMID: 15018612

Abstract

Phosphotriesterase (PTE) detoxifies nerve agents and organophosphate pesticides. The two zinc cations of the PTE active centre can be substituted by other transition metal cations without loss of activity. Furthermore, metal-substituted PTEs display differences in catalytic properties. A prerequisite for engineering highly efficient mutants of PTE is to improve their thermostability. Isoelectric focusing, capillary electrophoresis and steady-state kinetics analysis were used to determine the contribution of the active-site cations Zn2+, Co2+ or Cd2+ to both the catalytic activity and the conformational stability of the corresponding PTE isoforms. The three isoforms have different pI values (7.2, 7.5 and 7.1) and showed non-superimposable electrophoretic titration curves. The overall structural alterations, causing changes in functional properties, were found to be related to the nature of the bound cation: ionic radius and ion electronegativity correlate with Km and kcat respectively. In addition, the pH-dependent activity profiles of isoforms were different. The temperature-dependent profiles of activity showed maximum activity at T < or =35 degrees C, followed by an activation phase near 45-48 degrees C and then inactivation which was completed at 60 degrees C. Analysis of thermal denaturation of the PTEs provided evidence that the activation phase resulted from a transient intermediate. Finally, at the optimum activity between pH 8 and 9.4, the thermostability of the different PTEs increased as the pH decreased, and the metal cation modulated stability (Zn2+-, Co2+- and Cd2+-PTE showed different T (m) values of 60.5-67 degrees C, 58-64 degrees C and 53-64 degrees C respectively). Requirements for optimum activity of PTE (displayed by Co2+-PTE) and maximum stability (displayed by Zn2+-PTE) were demonstrated.

Full Text

The Full Text of this article is available as a PDF (595.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benning M. M., Kuo J. M., Raushel F. M., Holden H. M. Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry. 1994 Dec 20;33(50):15001–15007. doi: 10.1021/bi00254a008. [DOI] [PubMed] [Google Scholar]
  2. Benning M. M., Shim H., Raushel F. M., Holden H. M. High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry. 2001 Mar 6;40(9):2712–2722. doi: 10.1021/bi002661e. [DOI] [PubMed] [Google Scholar]
  3. Caldwell S. R., Newcomb J. R., Schlecht K. A., Raushel F. M. Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry. 1991 Jul 30;30(30):7438–7444. doi: 10.1021/bi00244a010. [DOI] [PubMed] [Google Scholar]
  4. Chen-Goodspeed M., Sogorb M. A., Wu F., Hong S. B., Raushel F. M. Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Biochemistry. 2001 Feb 6;40(5):1325–1331. doi: 10.1021/bi001548l. [DOI] [PubMed] [Google Scholar]
  5. Chen-Goodspeed M., Sogorb M. A., Wu F., Raushel F. M. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Biochemistry. 2001 Feb 6;40(5):1332–1339. doi: 10.1021/bi001549d. [DOI] [PubMed] [Google Scholar]
  6. Cho Catherine Mee-Hie, Mulchandani Ashok, Chen Wilfred. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol. 2002 Apr;68(4):2026–2030. doi: 10.1128/AEM.68.4.2026-2030.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curdel A., Iwatsubo M. Biosynthetic incorporation of cobalt into yeast alcohol dehydrogenase. FEBS Lett. 1968 Aug;1(3):133–136. doi: 10.1016/0014-5793(68)80040-7. [DOI] [PubMed] [Google Scholar]
  8. Donarski W. J., Dumas D. P., Heitmeyer D. P., Lewis V. E., Raushel F. M. Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry. 1989 May 30;28(11):4650–4655. doi: 10.1021/bi00437a021. [DOI] [PubMed] [Google Scholar]
  9. Dumas D. P., Caldwell S. R., Wild J. R., Raushel F. M. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem. 1989 Nov 25;264(33):19659–19665. [PubMed] [Google Scholar]
  10. Dumas D. P., Durst H. D., Landis W. G., Raushel F. M., Wild J. R. Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys. 1990 Feb 15;277(1):155–159. doi: 10.1016/0003-9861(90)90564-f. [DOI] [PubMed] [Google Scholar]
  11. Grimsley J. K., Scholtz J. M., Pace C. N., Wild J. R. Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Biochemistry. 1997 Nov 25;36(47):14366–14374. doi: 10.1021/bi971596e. [DOI] [PubMed] [Google Scholar]
  12. Hill Craig M., Li Wen-Shan, Thoden James B., Holden Hazel M., Raushel Frank M. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. J Am Chem Soc. 2003 Jul 30;125(30):8990–8991. doi: 10.1021/ja0358798. [DOI] [PubMed] [Google Scholar]
  13. Hong S. B., Raushel F. M. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Biochemistry. 1996 Aug 20;35(33):10904–10912. doi: 10.1021/bi960663m. [DOI] [PubMed] [Google Scholar]
  14. Hong S. B., Raushel F. M. Stereochemical constraints on the substrate specificity of phosphotriesterase. Biochemistry. 1999 Jan 26;38(4):1159–1165. doi: 10.1021/bi982204m. [DOI] [PubMed] [Google Scholar]
  15. Kuo J. M., Raushel F. M. Identification of the histidine ligands to the binuclear metal center of phosphotriesterase by site-directed mutagenesis. Biochemistry. 1994 Apr 12;33(14):4265–4272. doi: 10.1021/bi00180a022. [DOI] [PubMed] [Google Scholar]
  16. Lai K., Dave K. I., Wild J. R. Bimetallic binding motifs in organophosphorus hydrolase are important for catalysis and structural organization. J Biol Chem. 1994 Jun 17;269(24):16579–16584. [PubMed] [Google Scholar]
  17. Omburo G. A., Kuo J. M., Mullins L. S., Raushel F. M. Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem. 1992 Jul 5;267(19):13278–13283. [PubMed] [Google Scholar]
  18. Omburo G. A., Mullins L. S., Raushel F. M. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy. Biochemistry. 1993 Sep 7;32(35):9148–9155. doi: 10.1021/bi00086a021. [DOI] [PubMed] [Google Scholar]
  19. Petrikovics I., Hong K., Omburo G., Hu Q. Z., Pei L., McGuinn W. D., Sylvester D., Tamulinas C., Papahadjopoulos D., Jaszberenyi J. C. Antagonism of paraoxon intoxication by recombinant phosphotriesterase encapsulated within sterically stabilized liposomes. Toxicol Appl Pharmacol. 1999 Apr 1;156(1):56–63. doi: 10.1006/taap.1998.8620. [DOI] [PubMed] [Google Scholar]
  20. Raushel F. M., Holden H. M. Phosphotriesterase: an enzyme in search of its natural substrate. Adv Enzymol Relat Areas Mol Biol. 2000;74:51–93. doi: 10.1002/9780470123201.ch2. [DOI] [PubMed] [Google Scholar]
  21. Raushel Frank M. Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol. 2002 Jun;5(3):288–295. doi: 10.1016/s1369-5274(02)00314-4. [DOI] [PubMed] [Google Scholar]
  22. Rochu D., Ducret G., Ribes F., Vanin S., Masson P. Capillary zone electrophoresis with optimized temperature control for studying thermal denaturation of proteins at various pH. Electrophoresis. 1999 Jun;20(7):1586–1594. doi: 10.1002/(SICI)1522-2683(19990601)20:7<1586::AID-ELPS1586>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  23. Rochu D., Georges C., Répiton J., Viguié N., Saliou B., Bon C., Masson P. Thermal stability of acetylcholinesterase from Bungarus fasciatus venom as investigated by capillary electrophoresis. Biochim Biophys Acta. 2001 Feb 9;1545(1-2):216–226. doi: 10.1016/s0167-4838(00)00279-x. [DOI] [PubMed] [Google Scholar]
  24. Rochu Daniel, Beaufet Nadège, Renault Frédérique, Viguié Nathalie, Masson Patrick. The wild type bacterial Co(2+)/Co(2+)-phosphotriesterase shows a middle-range thermostability. Biochim Biophys Acta. 2002 Feb 11;1594(2):207–218. doi: 10.1016/s0005-2728(01)00224-9. [DOI] [PubMed] [Google Scholar]
  25. Sanchez-Ruiz J. M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J. 1992 Apr;61(4):921–935. doi: 10.1016/S0006-3495(92)81899-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shikshnis V. A., Galkantaite N. Z., Melik-Nubarov N. S., Levitskii V. Iu, Slepnev V. I., Mozhaev V. V. Neobychnaia (piloobraznaia) temperaturnaia zavisimost' skorosti neobratimoi termoinaktivatsii fermentov. Biokhimiia. 1990 Aug;55(8):1347–1355. [PubMed] [Google Scholar]
  27. Shim H., Hong S. B., Raushel F. M. Hydrolysis of phosphodiesters through transformation of the bacterial phosphotriesterase. J Biol Chem. 1998 Jul 10;273(28):17445–17450. doi: 10.1074/jbc.273.28.17445. [DOI] [PubMed] [Google Scholar]
  28. Shim H., Raushel F. M. Self-assembly of the binuclear metal center of phosphotriesterase. Biochemistry. 2000 Jun 27;39(25):7357–7364. doi: 10.1021/bi000291o. [DOI] [PubMed] [Google Scholar]
  29. Speckhard D. C., Wu F. Y., Wu C. W. Role of the intrinsic metal in RNA polymerase from Escherichia coli. In vivo substitution of tightly bound zinc with cobalt. Biochemistry. 1977 Nov 29;16(24):5228–5234. doi: 10.1021/bi00643a011. [DOI] [PubMed] [Google Scholar]
  30. Villaverde J., Cladera J., Padrós E., Rigaud J. L., Duñach M. Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase. Eur J Biochem. 1997 Mar 1;244(2):441–448. doi: 10.1111/j.1432-1033.1997.t01-2-00441.x. [DOI] [PubMed] [Google Scholar]
  31. Watkins L. M., Mahoney H. J., McCulloch J. K., Raushel F. M. Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J Biol Chem. 1997 Oct 10;272(41):25596–25601. doi: 10.1074/jbc.272.41.25596. [DOI] [PubMed] [Google Scholar]
  32. Weingand-Ziade A., Ribes F., Renault F., Masson P. Pressure- and heat-induced inactivation of butyrylcholinesterase: evidence for multiple intermediates and the remnant inactivation process. Biochem J. 2001 Jun 1;356(Pt 2):487–493. doi: 10.1042/0264-6021:3560487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. diSioudi B., Grimsley J. K., Lai K., Wild J. R. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. Biochemistry. 1999 Mar 9;38(10):2866–2872. doi: 10.1021/bi9825302. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES