Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):643–650. doi: 10.1042/BJ20040136

Deuterium isotope effect on the oxidation of monophenols and o-diphenols by tyrosinase.

Lorena G Fenoll 1, María José Peñalver 1, José N Rodríguez-López 1, P A García-Ruiz 1, Francisco García-Cánovas 1, José Tudela 1
PMCID: PMC1224224  PMID: 15025557

Abstract

A solvent deuterium isotope effect on the catalytic affinity (km) and catalytic constant (kcat) of tyrosinase in its action on different monophenols and o-diphenols was observed. The catalytic constant decreased in all substrates as the molar fraction of deuterated water in the medium increased, while the catalytic affinity only decreased for the o-diphenols with an R group in C-1 [-H, -CH3 and -CH(CH3)2]. In a proton inventory study of the oxidation of o-diphenols, the representation of kcat fn/kcat f0 against n (atom fractions of deuterium), where kcat fn is the catalytic constant for a molar fraction of deuterium (n) and kcat f0 is the corresponding kinetic parameter in a water solution, was linear for all substrates, indicating that only one of the four protons transferred from the hydroxy groups of the two molecules of substrate, which are oxidized in one turnover, is responsible for the isotope effects, the proton transferred from the hydroxy group of C-4 to the peroxide of the oxytyrosinase form (Eox). However, in the representation of Km fn/Km f0 against n, where Km fn represents the catalytic affinity for a molar fraction of deuterium (n) and Km f0 is the corresponding kinetic parameter in a water solution, a linear decrease was observed as n increased in the case of o-diphenols with the R group [-H, -CH3 and -CH(CH3)2], and a parabolic increase with other R groups, indicating that more than one proton is responsible for the isotope effects on substrate binding. In the case of monophenols with six protons transferred in the catalytic cycle, the isotope effect occurs in the same way as for o-diphenols. In the present paper, the fractionation factors of different monophenols and o-diphenols are described and possible mechanistic implications are discussed.

Full Text

The Full Text of this article is available as a PDF (423.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Conrad J. S., Dawso S. R., Hubbard E. R., Meyers T. E., Strothkamp K. G. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH, and solvent deuterium isotope effects. Biochemistry. 1994 May 17;33(19):5739–5744. doi: 10.1021/bi00185a010. [DOI] [PubMed] [Google Scholar]
  3. Cánovas F. G., García-Carmona F., Sánchez J. V., Pastor J. L., Teruel J. A. The role of pH in the melanin biosynthesis pathway. J Biol Chem. 1982 Aug 10;257(15):8738–8744. [PubMed] [Google Scholar]
  4. Duckworth H. W., Coleman J. E. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem. 1970 Apr 10;245(7):1613–1625. [PubMed] [Google Scholar]
  5. Eisenstein O., Giessner-Prettre C., Maddaluno J., Stussi D., Weber J. Theoretical study of oxyhemocyanin active site: a possible insight on the first step of phenol oxidation by tyrosinase. Arch Biochem Biophys. 1992 Jul;296(1):247–255. doi: 10.1016/0003-9861(92)90569-i. [DOI] [PubMed] [Google Scholar]
  6. Espín J. C., García-Ruiz P. A., Tudela J., García-Cánovas F. Study of stereospecificity in mushroom tyrosinase. Biochem J. 1998 Apr 15;331(Pt 2):547–551. doi: 10.1042/bj3310547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fenoll L. G., Rodríguez-López J. N., García-Sevilla F., García-Ruiz P. A., Varón R., García-Cánovas F., Tudela J. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. Biochim Biophys Acta. 2001 Jul 9;1548(1):1–22. doi: 10.1016/s0167-4838(01)00207-2. [DOI] [PubMed] [Google Scholar]
  8. Fenoll L. G., Rodríguez-López J. N., Varón R., García-Ruiz P. A., García-Cánovas F., Tudela J. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols. Biol Chem. 2000 Apr;381(4):313–320. doi: 10.1515/BC.2000.041. [DOI] [PubMed] [Google Scholar]
  9. Jolley R. L., Jr, Evans L. H., Makino N., Mason H. S. Oxytyrosinase. J Biol Chem. 1974 Jan 25;249(2):335–345. [PubMed] [Google Scholar]
  10. MASON H. S. Structures and functions of the phenolase complex. Nature. 1956 Jan 14;177(4498):79–81. doi: 10.1038/177079a0. [DOI] [PubMed] [Google Scholar]
  11. Nicolas J. J., Richard-Forget F. C., Goupy P. M., Amiot M. J., Aubert S. Y. Enzymatic browning reactions in apple and apple products. Crit Rev Food Sci Nutr. 1994;34(2):109–157. doi: 10.1080/10408399409527653. [DOI] [PubMed] [Google Scholar]
  12. Perham R. Editorial. Eur J Biochem. 2000 Jan;267(1):1–1. doi: 10.1046/j.1432-1327.2000.02000.x. [DOI] [PubMed] [Google Scholar]
  13. Perham R. Editorial. Eur J Biochem. 2000 Jan;267(1):1–1. doi: 10.1046/j.1432-1327.2000.02000.x. [DOI] [PubMed] [Google Scholar]
  14. Peñalver María José, Rodríguez-López José Neptuno, García-Ruiz P. A., García-Cánovas Francisco, Tudela José. Solvent deuterium isotope effect on the oxidation of o-diphenols by tyrosinase. Biochim Biophys Acta. 2003 Aug 21;1650(1-2):128–135. doi: 10.1016/s1570-9639(03)00208-5. [DOI] [PubMed] [Google Scholar]
  15. Rodríguez-López J. N., Escribano J., García-Cánovas F. A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3-methyl-2-benzothiazolinone hydrazone. Anal Biochem. 1994 Jan;216(1):205–212. doi: 10.1006/abio.1994.1026. [DOI] [PubMed] [Google Scholar]
  16. Rodríguez-López J. N., Fenoll L. G., García-Ruiz P. A., Varón R., Tudela J., Thorneley R. N., García-Cánovas F. Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase. Biochemistry. 2000 Aug 29;39(34):10497–10506. doi: 10.1021/bi000539+. [DOI] [PubMed] [Google Scholar]
  17. Rodríguez-López J. N., Tudela J., Varón R., García-Carmona F., García-Cánovas F. Analysis of a kinetic model for melanin biosynthesis pathway. J Biol Chem. 1992 Feb 25;267(6):3801–3810. [PubMed] [Google Scholar]
  18. Ros J. R., Rodríguez-López J. N., García-Cánovas F. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J. 1993 Oct 1;295(Pt 1):309–312. doi: 10.1042/bj2950309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ros J. R., Rodríguez-López J. N., García-Cánovas F. Tyrosinase: kinetic analysis of the transient phase and the steady state. Biochim Biophys Acta. 1994 Jan 11;1204(1):33–42. doi: 10.1016/0167-4838(94)90029-9. [DOI] [PubMed] [Google Scholar]
  20. Ros J. R., Rodríguez-López J. N., Varón R., García-Cánovas F. Kinetics study of the oxidation of 4-tert-butylphenol by tyrosinase. Eur J Biochem. 1994 Jun 1;222(2):449–452. doi: 10.1111/j.1432-1033.1994.tb18884.x. [DOI] [PubMed] [Google Scholar]
  21. Schowen K. B., Schowen R. L. Solvent isotope effects of enzyme systems. Methods Enzymol. 1982;87:551–606. [PubMed] [Google Scholar]
  22. Solomon Edward I., Sundaram Uma M., Machonkin Timothy E. Multicopper Oxidases and Oxygenases. Chem Rev. 1996 Nov 7;96(7):2563–2606. doi: 10.1021/cr950046o. [DOI] [PubMed] [Google Scholar]
  23. Sánchez-Ferrer A., Rodríguez-López J. N., García-Cánovas F., García-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta. 1995 Feb 22;1247(1):1–11. doi: 10.1016/0167-4838(94)00204-t. [DOI] [PubMed] [Google Scholar]
  24. Venkatasubban K. S., Schowen R. L. The proton inventory technique. CRC Crit Rev Biochem. 1984;17(1):1–44. doi: 10.3109/10409238409110268. [DOI] [PubMed] [Google Scholar]
  25. Winder A. J., Harris H. New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem. 1991 Jun 1;198(2):317–326. doi: 10.1111/j.1432-1033.1991.tb16018.x. [DOI] [PubMed] [Google Scholar]
  26. Yong G., Leone C., Strothkamp K. G. Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site. Biochemistry. 1990 Oct 16;29(41):9684–9690. doi: 10.1021/bi00493a025. [DOI] [PubMed] [Google Scholar]
  27. van Gelder C. W., Flurkey W. H., Wichers H. J. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry. 1997 Aug;45(7):1309–1323. doi: 10.1016/s0031-9422(97)00186-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES