Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):795–804. doi: 10.1042/BJ20040274

Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism.

Troy A Hornberger 1, Rudy Stuppard 1, Kevin E Conley 1, Mark J Fedele 1, Marta L Fiorotto 1, Eva R Chin 1, Karyn A Esser 1
PMCID: PMC1224227  PMID: 15030312

Abstract

In response to growth factors, mTOR (mammalian target of rapamycin) has been identified as a central component of the signalling pathways that control the translational machinery and cell growth. Signalling through mTOR has also been shown to be necessary for the mechanical load-induced growth of cardiac and skeletal muscles. Although the mechanisms involved for mechanically induced activation of mTOR are not known, it has been suggested that activation of PI3K (phosphoinositide 3-kinase) and protein kinase B (Akt), via the release of locally acting growth factors, underlies this process. In the present study, we show that mechanically stimulating (passive stretch) the skeletal muscle ex vivo results in the activation of mTOR-dependent signalling events. The activation of mTOR-dependent signalling events was necessary for an increase in translational efficiency, demonstrating the physiological significance of this pathway. Using pharmacological inhibitors, we show that activation of mTOR-dependent signalling occurs through a PI3K-independent pathway. Consistent with these results, mechanically induced signalling through mTOR was not disrupted in muscles from Akt1-/- mice. In addition, ex vivo co-incubation experiments, along with in vitro conditioned-media experiments, demonstrate that a mechanically induced release of locally acting autocrine/paracrine growth factors was not sufficient for the activation of the mTOR pathway. Taken together, our results demonstrate that mechanical stimuli can activate the mTOR pathway independent of PI3K/Akt1 and locally acting growth factors. Thus mechanical stimuli and growth factors provide distinct inputs through which mTOR co-ordinates an increase in the translational efficiency.

Full Text

The Full Text of this article is available as a PDF (633.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony J. C., Yoshizawa F., Anthony T. G., Vary T. C., Jefferson L. S., Kimball S. R. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000 Oct;130(10):2413–2419. doi: 10.1093/jn/130.10.2413. [DOI] [PubMed] [Google Scholar]
  2. Armstrong J. L., Bonavaud S. M., Toole B. J., Yeaman S. J. Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J Biol Chem. 2001 Jan 12;276(2):952–956. doi: 10.1074/jbc.M004812200. [DOI] [PubMed] [Google Scholar]
  3. Augert G., Monier S., Le Marchand-Brustel Y. Effect of exercise on protein turnover in muscles of lean and obese mice. Diabetologia. 1986 Apr;29(4):248–253. doi: 10.1007/BF00454885. [DOI] [PubMed] [Google Scholar]
  4. Bodine S. C., Stitt T. N., Gonzalez M., Kline W. O., Stover G. L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J. C., Glass D. J. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001 Nov;3(11):1014–1019. doi: 10.1038/ncb1101-1014. [DOI] [PubMed] [Google Scholar]
  5. Burnett P. E., Barrow R. K., Cohen N. A., Snyder S. H., Sabatini D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432–1437. doi: 10.1073/pnas.95.4.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Jie, Fang Yimin. A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol. 2002 Oct 1;64(7):1071–1077. doi: 10.1016/s0006-2952(02)01263-7. [DOI] [PubMed] [Google Scholar]
  7. Chen W. S., Xu P. Z., Gottlob K., Chen M. L., Sokol K., Shiyanova T., Roninson I., Weng W., Suzuki R., Tobe K. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001 Sep 1;15(17):2203–2208. doi: 10.1101/gad.913901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen W. S., Xu P. Z., Gottlob K., Chen M. L., Sokol K., Shiyanova T., Roninson I., Weng W., Suzuki R., Tobe K. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001 Sep 1;15(17):2203–2208. doi: 10.1101/gad.913901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke M. S., Feeback D. L. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J. 1996 Mar;10(4):502–509. doi: 10.1096/fasebj.10.4.8647349. [DOI] [PubMed] [Google Scholar]
  10. Crow M. T., Kushmerick M. J. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982 Jan;79(1):147–166. doi: 10.1085/jgp.79.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dan Han C., Sun Mei, Yang Lin, Feldman Richard I., Sui Xue-Mei, Ou Chien Chen, Nellist Mark, Yeung Raymond S., Halley Dicky J. J., Nicosia Santo V. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem. 2002 Jul 11;277(38):35364–35370. doi: 10.1074/jbc.M205838200. [DOI] [PubMed] [Google Scholar]
  12. Dardevet D., Sornet C., Balage M., Grizard J. Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr. 2000 Nov;130(11):2630–2635. doi: 10.1093/jn/130.11.2630. [DOI] [PubMed] [Google Scholar]
  13. Dardevet D., Sornet C., Vary T., Grizard J. Phosphatidylinositol 3-kinase and p70 s6 kinase participate in the regulation of protein turnover in skeletal muscle by insulin and insulin-like growth factor I. Endocrinology. 1996 Oct;137(10):4087–4094. doi: 10.1210/endo.137.10.8828461. [DOI] [PubMed] [Google Scholar]
  14. Davis T. A., Fiorotto M. L., Nguyen H. V., Burrin D. G. Aminoacyl-tRNA and tissue free amino acid pools are equilibrated after a flooding dose of phenylalanine. Am J Physiol. 1999 Jul;277(1 Pt 1):E103–E109. doi: 10.1152/ajpendo.1999.277.1.E103. [DOI] [PubMed] [Google Scholar]
  15. Dennis P. B., Pullen N., Kozma S. C., Thomas G. The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol. 1996 Nov;16(11):6242–6251. doi: 10.1128/mcb.16.11.6242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fang Y., Vilella-Bach M., Bachmann R., Flanigan A., Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001 Nov 30;294(5548):1942–1945. doi: 10.1126/science.1066015. [DOI] [PubMed] [Google Scholar]
  17. Fiorotto M. L., Davis T. A., Reeds P. J. Regulation of myofibrillar protein turnover during maturation in normal and undernourished rat pups. Am J Physiol Regul Integr Comp Physiol. 2000 Apr;278(4):R845–R854. doi: 10.1152/ajpregu.2000.278.4.R845. [DOI] [PubMed] [Google Scholar]
  18. Garlick P. J., McNurlan M. A., Preedy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. doi: 10.1042/bj1920719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gingras A. C., Raught B., Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001 Apr 1;15(7):807–826. doi: 10.1101/gad.887201. [DOI] [PubMed] [Google Scholar]
  20. Goldspink D. F. The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol. 1977 Jan;264(1):267–282. doi: 10.1113/jphysiol.1977.sp011667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldspink G. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat. 1999 Apr;194(Pt 3):323–334. doi: 10.1046/j.1469-7580.1999.19430323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gregory P., Gagnon J., Essig D. A., Reid S. K., Prior G., Zak R. Differential regulation of actin and myosin isoenzyme synthesis in functionally overloaded skeletal muscle. Biochem J. 1990 Jan 15;265(2):525–532. doi: 10.1042/bj2650525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Grzelkowska K., Dardevet D., Balage M., Grizard J. Involvement of the rapamycin-sensitive pathway in the insulin regulation of muscle protein synthesis in streptozotocin-diabetic rats. J Endocrinol. 1999 Jan;160(1):137–145. doi: 10.1677/joe.0.1600137. [DOI] [PubMed] [Google Scholar]
  24. Herbert T. P., Kilhams G. R., Batty I. H., Proud C. G. Distinct signalling pathways mediate insulin and phorbol ester-stimulated eukaryotic initiation factor 4F assembly and protein synthesis in HEK 293 cells. J Biol Chem. 2000 Apr 14;275(15):11249–11256. doi: 10.1074/jbc.275.15.11249. [DOI] [PubMed] [Google Scholar]
  25. Hornberger T. A., Hunter R. B., Kandarian S. C., Esser K. A. Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. Am J Physiol Cell Physiol. 2001 Jul;281(1):C179–C187. doi: 10.1152/ajpcell.2001.281.1.C179. [DOI] [PubMed] [Google Scholar]
  26. Isotani S., Hara K., Tokunaga C., Inoue H., Avruch J., Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999 Nov 26;274(48):34493–34498. doi: 10.1074/jbc.274.48.34493. [DOI] [PubMed] [Google Scholar]
  27. Jefferies H. B., Fumagalli S., Dennis P. B., Reinhard C., Pearson R. B., Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997 Jun 16;16(12):3693–3704. doi: 10.1093/emboj/16.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jefferson L. S., Fabian J. R., Kimball S. R. Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int J Biochem Cell Biol. 1999 Jan;31(1):191–200. doi: 10.1016/s1357-2725(98)00141-1. [DOI] [PubMed] [Google Scholar]
  29. Kawasome H., Papst P., Webb S., Keller G. M., Johnson G. L., Gelfand E. W., Terada N. Targeted disruption of p70(s6k) defines its role in protein synthesis and rapamycin sensitivity. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5033–5038. doi: 10.1073/pnas.95.9.5033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kimball S. R., Horetsky R. L., Jefferson L. S. Signal transduction pathways involved in the regulation of protein synthesis by insulin in L6 myoblasts. Am J Physiol. 1998 Jan;274(1 Pt 1):C221–C228. doi: 10.1152/ajpcell.1998.274.1.C221. [DOI] [PubMed] [Google Scholar]
  31. Kimball Scot R., Farrell Peter A., Jefferson Leonard S. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol (1985) 2002 Sep;93(3):1168–1180. doi: 10.1152/japplphysiol.00221.2002. [DOI] [PubMed] [Google Scholar]
  32. Lim Hyung-Kyu, Choi Young-Ae, Park Wan, Lee Taehoon, Ryu Sung Ho, Kim Seong-Yong, Kim Jae-Ryong, Kim Jung-Hye, Baek Suk-Hwan. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. J Biol Chem. 2003 Sep 5;278(46):45117–45127. doi: 10.1074/jbc.M303789200. [DOI] [PubMed] [Google Scholar]
  33. Liu Guangming, Zhang Yiguo, Bode Ann M., Ma Wei-Ya, Dong Zigang. Phosphorylation of 4E-BP1 is mediated by the p38/MSK1 pathway in response to UVB irradiation. J Biol Chem. 2002 Jan 2;277(11):8810–8816. doi: 10.1074/jbc.M110477200. [DOI] [PubMed] [Google Scholar]
  34. Martin Kathleen A., Blenis John. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res. 2002;86:1–39. doi: 10.1016/s0065-230x(02)86001-8. [DOI] [PubMed] [Google Scholar]
  35. Nader Gustavo A., Hornberger Troy A., Esser Karyn A. Translational control: implications for skeletal muscle hypertrophy. Clin Orthop Relat Res. 2002 Oct;(403 Suppl):S178–S187. doi: 10.1097/00003086-200210001-00021. [DOI] [PubMed] [Google Scholar]
  36. Navé B. T., Ouwens M., Withers D. J., Alessi D. R., Shepherd P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999 Dec 1;344(Pt 2):427–431. [PMC free article] [PubMed] [Google Scholar]
  37. Perrone C. E., Fenwick-Smith D., Vandenburgh H. H. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J Biol Chem. 1995 Feb 3;270(5):2099–2106. doi: 10.1074/jbc.270.5.2099. [DOI] [PubMed] [Google Scholar]
  38. Peyrollier K., Hajduch E., Blair A. S., Hyde R., Hundal H. S. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport. Biochem J. 2000 Sep 1;350(Pt 2):361–368. [PMC free article] [PubMed] [Google Scholar]
  39. Quevedo C., Alcázar A., Salinas M. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells. J Biol Chem. 2000 Jun 23;275(25):19192–19197. doi: 10.1074/jbc.M000238200. [DOI] [PubMed] [Google Scholar]
  40. Reeds P. J., Palmer R. M., Smith R. H. Protein and collagen synthesis in rat diaphragm muscle incubated in vitro: the effect of alterations in tension produced by electrical or mechanical means. Int J Biochem. 1980;11(1):7–14. doi: 10.1016/0020-711x(80)90274-8. [DOI] [PubMed] [Google Scholar]
  41. Sakamoto Kei, Hirshman Michael F., Aschenbach William G., Goodyear Laurie J. Contraction regulation of Akt in rat skeletal muscle. J Biol Chem. 2002 Jan 23;277(14):11910–11917. doi: 10.1074/jbc.M112410200. [DOI] [PubMed] [Google Scholar]
  42. Sjøgaard G., Saltin B. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol. 1982 Sep;243(3):R271–R280. doi: 10.1152/ajpregu.1982.243.3.R271. [DOI] [PubMed] [Google Scholar]
  43. Stokoe D., Stephens L. R., Copeland T., Gaffney P. R., Reese C. B., Painter G. F., Holmes A. B., McCormick F., Hawkins P. T. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997 Jul 25;277(5325):567–570. doi: 10.1126/science.277.5325.567. [DOI] [PubMed] [Google Scholar]
  44. Tang Xiuwen, Wang Lijun, Proud Christopher G., Downes C. Peter. Muscarinic receptor-mediated activation of p70 S6 kinase 1 (S6K1) in 1321N1 astrocytoma cells: permissive role of phosphoinositide 3-kinase. Biochem J. 2003 Aug 15;374(Pt 1):137–143. doi: 10.1042/BJ20021910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Turinsky J., Damrau-Abney A. Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: study with insulin and exercise. Am J Physiol. 1999 Jan;276(1 Pt 2):R277–R282. doi: 10.1152/ajpregu.1999.276.1.R277. [DOI] [PubMed] [Google Scholar]
  46. Vandenburgh H. H., Shansky J., Solerssi R., Chromiak J. Mechanical stimulation of skeletal muscle increases prostaglandin F2 alpha production, cyclooxygenase activity, and cell growth by a pertussis toxin sensitive mechanism. J Cell Physiol. 1995 May;163(2):285–294. doi: 10.1002/jcp.1041630209. [DOI] [PubMed] [Google Scholar]
  47. Wang Xuemin, Janmaat Maarten, Beugnet Anne, Paulin Fiona E. M., Proud Christopher G. Evidence that the dephosphorylation of Ser(535) in the epsilon-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin. Biochem J. 2002 Oct 15;367(Pt 2):475–481. doi: 10.1042/BJ20020677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wiseman R. W., Moerland T. S., Chase P. B., Stuppard R., Kushmerick M. J. High-performance liquid chromatographic assays for free and phosphorylated derivatives of the creatine analogues beta-guanidopropionic acid and 1-carboxy-methyl-2-iminoimidazolidine (cyclocreatine). Anal Biochem. 1992 Aug 1;204(2):383–389. doi: 10.1016/0003-2697(92)90255-6. [DOI] [PubMed] [Google Scholar]
  49. Wong T. S., Booth F. W. Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. J Appl Physiol (1985) 1990 Nov;69(5):1718–1724. doi: 10.1152/jappl.1990.69.5.1718. [DOI] [PubMed] [Google Scholar]
  50. van Weeren P. C., de Bruyn K. M., de Vries-Smits A. M., van Lint J., Burgering B. M. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998 May 22;273(21):13150–13156. doi: 10.1074/jbc.273.21.13150. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES