Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):859–865. doi: 10.1042/BJ20031975

Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli.

Maria Luisa Mangoni 1, Niv Papo 1, Donatella Barra 1, Maurizio Simmaco 1, Argante Bozzi 1, Antonio Di Giulio 1, Andrea C Rinaldi 1
PMCID: PMC1224231  PMID: 15032749

Abstract

Antimicrobial peptides are produced by all organisms in response to microbial invasion and are considered as promising candidates for future antibiotics. There is a wealth of evidence that many of them interact and increase the permeability of bacterial membranes as part of their killing mechanism. However, it is not clear whether this is the lethal step. To address this issue, we studied the interaction of the antimicrobial peptide temporin L with Escherichia coli by using fluorescence, confocal and electron microscopy. The peptide previously isolated from skin secretions of the frog Rana temporaria has the sequence FVQWFSKFLGRIL-NH2. With regard to fluorescence microscopy, we applied, for the first time, a triple-staining method based on the fluorochromes 5-cyano-2,3-ditolyl tetrazolium chloride, 4',6-diamidino-2-phenylindole and FITC. This technique enabled us to identify, in the same sample, both living and total cells, as well as bacteria with altered membrane permeability. These results reveal that temporin L increases the permeability of the bacterial inner membrane in a dose-dependent manner without destroying the cell's integrity. At low peptide concentrations, the inner membrane becomes permeable to small molecules but does not allow the killing of bacteria. However, at high peptide concentrations, larger molecules, but not DNA, leak out, which results in cell death. Very interestingly, in contrast with many antimicrobial peptides, temporin L does not lyse E. coli cells but rather forms ghost-like bacteria, as observed by scanning and transmission electron microscopy. Besides shedding light on the mode of action of temporin L and possibly that of other antimicrobial peptides, the present study demonstrates the advantage of using the triple-fluorescence approach combined with microscopical techniques to explore the mechanism of membrane-active peptides in general.

Full Text

The Full Text of this article is available as a PDF (457.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boman H. G., Agerberth B., Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978–2984. doi: 10.1128/iai.61.7.2978-2984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boman H. G. Antibacterial peptides: basic facts and emerging concepts. J Intern Med. 2003 Sep;254(3):197–215. doi: 10.1046/j.1365-2796.2003.01228.x. [DOI] [PubMed] [Google Scholar]
  3. Boman H. G. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol. 1998 Jul;48(1):15–25. doi: 10.1046/j.1365-3083.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  4. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  5. Cappelier J. M., Lazaro B., Rossero A., Fernandez-Astorga A., Federighi M. Double staining (CTC-DAPI) for detection and enumeration of viable but non-culturable Campylobacter jejuni cells. Vet Res. 1997 Nov-Dec;28(6):547–555. [PubMed] [Google Scholar]
  6. Casteels P., Ampe C., Riviere L., Van Damme J., Elicone C., Fleming M., Jacobs F., Tempst P. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem. 1990 Jan 26;187(2):381–386. doi: 10.1111/j.1432-1033.1990.tb15315.x. [DOI] [PubMed] [Google Scholar]
  7. Casteels P., Tempst P. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun. 1994 Feb 28;199(1):339–345. doi: 10.1006/bbrc.1994.1234. [DOI] [PubMed] [Google Scholar]
  8. Falla T. J., Karunaratne D. N., Hancock R. E. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996 Aug 9;271(32):19298–19303. doi: 10.1074/jbc.271.32.19298. [DOI] [PubMed] [Google Scholar]
  9. Friedrich C. L., Moyles D., Beveridge T. J., Hancock R. E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother. 2000 Aug;44(8):2086–2092. doi: 10.1128/aac.44.8.2086-2092.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ganz T., Lehrer R. I. Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today. 1999 Jul;5(7):292–297. doi: 10.1016/s1357-4310(99)01490-2. [DOI] [PubMed] [Google Scholar]
  11. Hancock R. E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001 Oct;1(3):156–164. doi: 10.1016/S1473-3099(01)00092-5. [DOI] [PubMed] [Google Scholar]
  12. Hancock R. E., Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000 Sep;8(9):402–410. doi: 10.1016/s0966-842x(00)01823-0. [DOI] [PubMed] [Google Scholar]
  13. Hancock R. E., Scott M. G. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8856–8861. doi: 10.1073/pnas.97.16.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hancock Robert E. W., Rozek Annett. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett. 2002 Jan 10;206(2):143–149. doi: 10.1111/j.1574-6968.2002.tb11000.x. [DOI] [PubMed] [Google Scholar]
  15. Henk W. G., Todd W. J., Enright F. M., Mitchell P. S. The morphological effects of two antimicrobial peptides, hecate-1 and melittin, on Escherichia coli. Scanning Microsc. 1995 Jun;9(2):501–507. [PubMed] [Google Scholar]
  16. Ibrahim H. R., Sugimoto Y., Aoki T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim Biophys Acta. 2000 Oct 18;1523(2-3):196–205. doi: 10.1016/s0304-4165(00)00122-7. [DOI] [PubMed] [Google Scholar]
  17. Johansen C., Verheul A., Gram L., Gill T., Abee T. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria. Appl Environ Microbiol. 1997 Mar;63(3):1155–1159. doi: 10.1128/aem.63.3.1155-1159.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimbrell D. A., Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet. 2001 Apr;2(4):256–267. doi: 10.1038/35066006. [DOI] [PubMed] [Google Scholar]
  19. Lehrer R. I., Barton A., Ganz T. Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods. 1988 Apr 6;108(1-2):153–158. doi: 10.1016/0022-1759(88)90414-0. [DOI] [PubMed] [Google Scholar]
  20. Lehrer R. I., Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol. 1999 Feb;11(1):23–27. doi: 10.1016/s0952-7915(99)80005-3. [DOI] [PubMed] [Google Scholar]
  21. Mangoni M. L., Grovale N., Giorgi A., Mignogna G., Simmaco M., Barra D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides. 2000 Nov;21(11):1673–1679. doi: 10.1016/s0196-9781(00)00316-8. [DOI] [PubMed] [Google Scholar]
  22. Mangoni M. L., Rinaldi A. C., Di Giulio A., Mignogna G., Bozzi A., Barra D., Simmaco M. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem. 2000 Mar;267(5):1447–1454. doi: 10.1046/j.1432-1327.2000.01143.x. [DOI] [PubMed] [Google Scholar]
  23. Matsuzaki K., Sugishita K., Harada M., Fujii N., Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997 Jul 5;1327(1):119–130. doi: 10.1016/s0005-2736(97)00051-5. [DOI] [PubMed] [Google Scholar]
  24. Normark S., Boman H. G., Matsson E. Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J Bacteriol. 1969 Mar;97(3):1334–1342. doi: 10.1128/jb.97.3.1334-1342.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okada M., Natori S. Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J. 1984 Aug 15;222(1):119–124. doi: 10.1042/bj2220119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oren Z., Hong J., Shai Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem. 1997 Jun 6;272(23):14643–14649. doi: 10.1074/jbc.272.23.14643. [DOI] [PubMed] [Google Scholar]
  27. Oren Z., Lerman J. C., Gudmundsson G. H., Agerberth B., Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999 Aug 1;341(Pt 3):501–513. [PMC free article] [PubMed] [Google Scholar]
  28. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  29. Papagianni Maria. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv. 2003 Sep;21(6):465–499. doi: 10.1016/s0734-9750(03)00077-6. [DOI] [PubMed] [Google Scholar]
  30. Papo Niv, Oren Ziv, Pag Ulrike, Sahl Hans-Georg, Shai Yechiel. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J Biol Chem. 2002 Jul 10;277(37):33913–33921. doi: 10.1074/jbc.M204928200. [DOI] [PubMed] [Google Scholar]
  31. Park C. B., Kim H. S., Kim S. C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998 Mar 6;244(1):253–257. doi: 10.1006/bbrc.1998.8159. [DOI] [PubMed] [Google Scholar]
  32. Park C. B., Yi K. S., Matsuzaki K., Kim M. S., Kim S. C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8245–8250. doi: 10.1073/pnas.150518097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pellegrini A., Thomas U., Wild P., Schraner E., von Fellenberg R. Effect of lysozyme or modified lysozyme fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. Microbiol Res. 2000 Jul;155(2):69–77. doi: 10.1016/S0944-5013(00)80040-3. [DOI] [PubMed] [Google Scholar]
  34. Rinaldi Andrea C. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Chem Biol. 2002 Dec;6(6):799–804. doi: 10.1016/s1367-5931(02)00401-5. [DOI] [PubMed] [Google Scholar]
  35. Rinaldi Andrea C., Mangoni Maria Luisa, Rufo Anna, Luzi Carla, Barra Donatella, Zhao Hongxia, Kinnunen Paavo K. J., Bozzi Argante, Di Giulio Antonio, Simmaco Maurizio. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J. 2002 Nov 15;368(Pt 1):91–100. doi: 10.1042/BJ20020806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sadler Kristen, Eom Khee Dong, Yang Jin-Long, Dimitrova Yoana, Tam James P. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry. 2002 Dec 3;41(48):14150–14157. doi: 10.1021/bi026661l. [DOI] [PubMed] [Google Scholar]
  38. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
  39. Shai Y., Oren Z. Diastereoisomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem. 1996 Mar 29;271(13):7305–7308. doi: 10.1074/jbc.271.13.7305. [DOI] [PubMed] [Google Scholar]
  40. Shai Yechiel. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66(4):236–248. doi: 10.1002/bip.10260. [DOI] [PubMed] [Google Scholar]
  41. Shi J., Ross C. R., Chengappa M. M., Sylte M. J., McVey D. S., Blecha F. Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide. Antimicrob Agents Chemother. 1996 Jan;40(1):115–121. doi: 10.1128/aac.40.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Simmaco M., Mignogna G., Canofeni S., Miele R., Mangoni M. L., Barra D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem. 1996 Dec 15;242(3):788–792. doi: 10.1111/j.1432-1033.1996.0788r.x. [DOI] [PubMed] [Google Scholar]
  43. Skerlavaj B., Benincasa M., Risso A., Zanetti M., Gennaro R. SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett. 1999 Dec 10;463(1-2):58–62. doi: 10.1016/s0014-5793(99)01600-2. [DOI] [PubMed] [Google Scholar]
  44. Skerlavaj B., Romeo D., Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun. 1990 Nov;58(11):3724–3730. doi: 10.1128/iai.58.11.3724-3730.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Subbalakshmi C., Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998 Mar 1;160(1):91–96. doi: 10.1111/j.1574-6968.1998.tb12896.x. [DOI] [PubMed] [Google Scholar]
  46. Tiozzo E., Rocco G., Tossi A., Romeo D. Wide-spectrum antibiotic activity of synthetic, amphipathic peptides. Biochem Biophys Res Commun. 1998 Aug 10;249(1):202–206. doi: 10.1006/bbrc.1998.9114. [DOI] [PubMed] [Google Scholar]
  47. Wu M., Maier E., Benz R., Hancock R. E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999 Jun 1;38(22):7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  48. Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395. doi: 10.1038/415389a. [DOI] [PubMed] [Google Scholar]
  49. Zhao Hongxia, Kinnunen Paavo K. J. Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem. 2002 May 3;277(28):25170–25177. doi: 10.1074/jbc.M203186200. [DOI] [PubMed] [Google Scholar]
  50. Zhao Hongxia, Rinaldi Andrea C., Di Giulio Antonio, Simmaco Maurizio, Kinnunen Paavo K. J. Interactions of the antimicrobial peptides temporins with model biomembranes. Comparison of temporins B and L. Biochemistry. 2002 Apr 2;41(13):4425–4436. doi: 10.1021/bi011929e. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES