Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):897–905. doi: 10.1042/BJ20031726

Syncollin inhibits regulated corticotropin secretion from AtT-20 cells through a reduction in the secretory vesicle population.

Barbara Wäsle 1, Lori B Hays 1, Christopher J Rhodes 1, J Michael Edwardson 1
PMCID: PMC1224234  PMID: 15040787

Abstract

Syncollin is a 13 kDa protein that is highly expressed in the exocrine pancreas. Syncollin normally exists as a doughnut-shaped homo-oligomer (quite probably a hexamer) in close association with the luminal surface of the zymogen granule membrane. In the present study, we examine the effect of expression of syncollin in AtT-20 neuroendocrine cells, which do not normally express this protein. Efficient expression was achieved by infection of the cells with adenoviral constructs encoding either untagged or GFP (green fluorescent protein)-tagged syncollin. Both forms of the protein were sorted into corticotropin (ACTH)-positive secretory vesicles present mainly at the tips of cell processes. Neither form affected basal corticotropin secretion or the constitutive secretion of exogenously expressed secreted alkaline phosphatase. In contrast, regulated secretion of corticotropin was inhibited (by 49%) by untagged but not by GFP-tagged syncollin. In parallel, untagged syncollin caused a 46% reduction in the number of secretory vesicles present at the tips of the cell processes. Syncollin-GFP was without effect. We could also show that native syncollin purified from rat pancreas was capable of permeabilizing erythrocytes. We suggest that syncollin may induce uncontrolled permeabilization of corticotropin-containing vesicles and subsequently destabilize them. Both forms of syncollin were tightly membrane-associated and appeared to exist as homooligomers. Hence, the lack of effect of syncollin-GFP on regulated exocytosis suggests that the GFP tag interferes in a subtler manner with the properties of the assembled protein.

Full Text

The Full Text of this article is available as a PDF (763.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S. J., Hansen N. J., Hodel A., Jahn R., Edwardson J. M. Analysis of the association of syncollin with the membrane of the pancreatic zymogen granule. J Biol Chem. 2000 Apr 14;275(15):11306–11311. doi: 10.1074/jbc.275.15.11306. [DOI] [PubMed] [Google Scholar]
  2. Antonin Wolfram, Wagner Martin, Riedel Dietmar, Brose Nils, Jahn Reinhard. Loss of the zymogen granule protein syncollin affects pancreatic protein synthesis and transport but not secretion. Mol Cell Biol. 2002 Mar;22(5):1545–1554. doi: 10.1128/mcb.22.5.1545-1554.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnstable C. J., Hofstein R., Akagawa K. A marker of early amacrine cell development in rat retina. Brain Res. 1985 Jun;352(2):286–290. doi: 10.1016/0165-3806(85)90116-6. [DOI] [PubMed] [Google Scholar]
  4. Baumert M., Maycox P. R., Navone F., De Camilli P., Jahn R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 1989 Feb;8(2):379–384. doi: 10.1002/j.1460-2075.1989.tb03388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cabana C., Magny P., Nadeau D., Grondin G., Beaudoin A. Freeze-fracture study of the zymogen granule membrane of pancreas: two novel types of intramembrane particles. Eur J Cell Biol. 1988 Feb;45(2):246–255. [PubMed] [Google Scholar]
  6. Castro M. G., Goya R. G., Sosa Y. E., Rowe J., Larregina A., Morelli A., Lowenstein P. R. Expression of transgenes in normal and neoplastic anterior pituitary cells using recombinant adenoviruses: long term expression, cell cycle dependency, and effects on hormone secretion. Endocrinology. 1997 May;138(5):2184–2194. doi: 10.1210/endo.138.5.5134. [DOI] [PubMed] [Google Scholar]
  7. Dickson L. M., Lingohr M. K., McCuaig J., Hugl S. R., Snow L., Kahn B. B., Myers M. G., Jr, Rhodes C. J. Differential activation of protein kinase B and p70(S6)K by glucose and insulin-like growth factor 1 in pancreatic beta-cells (INS-1). J Biol Chem. 2001 Mar 27;276(24):21110–21120. doi: 10.1074/jbc.M101257200. [DOI] [PubMed] [Google Scholar]
  8. Edelmann L., Hanson P. I., Chapman E. R., Jahn R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 1995 Jan 16;14(2):224–231. doi: 10.1002/j.1460-2075.1995.tb06995.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edwardson J. M., An S., Jahn R. The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner. Cell. 1997 Jul 25;90(2):325–333. doi: 10.1016/s0092-8674(00)80340-2. [DOI] [PubMed] [Google Scholar]
  10. Geisse N. A., Wäsle B., Saslowsky D. E., Henderson R. M., Edwardson J. M. Syncollin homo-oligomers associate with lipid bilayers in the form of doughnut-shaped structures. J Membr Biol. 2002 Sep 15;189(2):83–92. doi: 10.1007/s00232-002-1005-9. [DOI] [PubMed] [Google Scholar]
  11. Goncz K. K., Rothman S. S. A trans-membrane pore can account for protein movement across zymogen granule membranes. Biochim Biophys Acta. 1995 Aug 23;1238(1):91–93. doi: 10.1016/0005-2736(95)00128-p. [DOI] [PubMed] [Google Scholar]
  12. Goncz K. K., Rothman S. S. Protein flux across the membrane of single secretion granules. Biochim Biophys Acta. 1992 Aug 10;1109(1):7–16. doi: 10.1016/0005-2736(92)90181-k. [DOI] [PubMed] [Google Scholar]
  13. He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2509–2514. doi: 10.1073/pnas.95.5.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hertle R. Serratia marcescens hemolysin (ShlA) binds artificial membranes and forms pores in a receptor-independent manner. J Membr Biol. 2002 Sep 1;189(1):1–14. doi: 10.1007/s00232-001-0191-1. [DOI] [PubMed] [Google Scholar]
  15. Hess D. T., Slater T. M., Wilson M. C., Skene J. H. The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci. 1992 Dec;12(12):4634–4641. doi: 10.1523/JNEUROSCI.12-12-04634.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hodel A., An S. J., Hansen N. J., Lawrence J., Wäsle B., Schrader M., Edwardson J. M. Cholesterol-dependent interaction of syncollin with the membrane of the pancreatic zymogen granule. Biochem J. 2001 Jun 15;356(Pt 3):843–850. doi: 10.1042/0264-6021:3560843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hodel A., Edwardson J. M. Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells. Biochem J. 2000 Sep 15;350(Pt 3):637–643. [PMC free article] [PubMed] [Google Scholar]
  18. Jain R. K., Joyce P. B., Molinete M., Halban P. A., Gorr S. U. Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J. 2001 Dec 15;360(Pt 3):645–649. doi: 10.1042/0264-6021:3600645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalus Ina, Hodel Alois, Koch Annett, Kleene Ralf, Edwardson J. Michael, Schrader Michael. Interaction of syncollin with GP-2, the major membrane protein of pancreatic zymogen granules, and association with lipid microdomains. Biochem J. 2002 Mar 1;362(Pt 2):433–442. doi: 10.1042/0264-6021:3620433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Madziva M. T., Edwardson J. M. Trafficking of green fluorescent protein-tagged muscarinic M4 receptors in NG108-15 cells. Eur J Pharmacol. 2001 Sep 28;428(1):9–18. doi: 10.1016/s0014-2999(01)01266-3. [DOI] [PubMed] [Google Scholar]
  21. Majó G., Aguado F., Blasi J., Marsal J. Synaptobrevin isoforms in secretory granules and synaptic-like microvesicles in anterior pituitary cells. Life Sci. 1998;62(7):607–616. doi: 10.1016/s0024-3205(97)01156-9. [DOI] [PubMed] [Google Scholar]
  22. McFerran B. W., Guild S. B. Effects of mastoparan upon the late stages of the ACTH secretory pathway of AtT-20 cells. Br J Pharmacol. 1995 Jun;115(4):696–702. doi: 10.1111/j.1476-5381.1995.tb14989.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McFerran B. W., Guild S. B. Effects of protein kinase C activators upon the late stages of the ACTH secretory pathway of AtT-20 cells. Br J Pharmacol. 1994 Sep;113(1):171–178. doi: 10.1111/j.1476-5381.1994.tb16190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Molinete M., Lilla V., Jain R., Joyce P. B., Gorr S. U., Ravazzola M., Halban P. A. Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia. 2000 Sep;43(9):1157–1164. doi: 10.1007/s001250051507. [DOI] [PubMed] [Google Scholar]
  25. Navone F., Di Gioia G., Jahn R., Browning M., Greengard P., De Camilli P. Microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of presynaptic nerve terminals. J Cell Biol. 1989 Dec;109(6 Pt 2):3425–3433. doi: 10.1083/jcb.109.6.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Orci L., Miller R. G., Montesano R., Perrelet A., Amherdt M., Vassalli P. Opposite polarity of filipin-induced deformations in the membrane of condensing vacuoles and zymogen granules. Science. 1980 Nov 28;210(4473):1019–1021. doi: 10.1126/science.7434010. [DOI] [PubMed] [Google Scholar]
  27. Reetz A., Solimena M., Matteoli M., Folli F., Takei K., De Camilli P. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 1991 May;10(5):1275–1284. doi: 10.1002/j.1460-2075.1991.tb08069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tan S., Hooi S. C. Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior. Am J Physiol Gastrointest Liver Physiol. 2000 Feb;278(2):G308–G320. doi: 10.1152/ajpgi.2000.278.2.G308. [DOI] [PubMed] [Google Scholar]
  29. Xu T., Rammner B., Margittai M., Artalejo A. R., Neher E., Jahn R. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell. 1999 Dec 23;99(7):713–722. doi: 10.1016/s0092-8674(00)81669-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES