Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jun 15;380(Pt 3):617–625. doi: 10.1042/BJ20040478

Transcriptomic analysis in the leech Theromyzon tessulatum: involvement of cystatin B in innate immunity.

Christophe Lefebvre 1, Claude Cocquerelle 1, Franck Vandenbulcke 1, David Hot 1, Ludovic Huot 1, Yves Lemoine 1, Michel Salzet 1
PMCID: PMC1224237  PMID: 15089746

Abstract

At the present time, there is little information on mechanisms of innate immunity in invertebrate groups other than insects, especially annelids. In the present study, we have performed a transcriptomic study of the immune response in the leech Theromyzon tessulatum after bacterial challenge, by a combination of differential display RT (reverse transcriptase)-PCR and cDNA microarrays. The results show relevant modulations concerning several known and unknown genes. Indeed, threonine deaminase, malate dehydrogenase, cystatin B, polyadenylate-binding protein and alpha-tubulin-like genes are up-regulated after immunostimulation. We focused on cystatin B (stefin B), which is an inhibitor of cysteine proteinases involved in the vertebrate immune response. We have cloned the full-length cDNA and named the T. tessulatum gene as Tt-cysb. Main structural features of cystatins were identified in the derived amino acid sequence of Tt-cysb cDNA; namely, a glycine residue in the N-terminus and a consensus sequence of Gln-Xaa-Val-Xaa-Gly (QXVXG) corresponding to the catalytic site. Moreover, Tt-cysb is the first cystatin B gene characterized in invertebrates. We have determined by in situ hybridization and immunocytochemistry that Tt-cysb is only expressed in large coelomic cells. In addition, this analysis confirmed that Tt-cysb is up-regulated after bacterial challenge, and that increased expression occurs only in coelomic cells. These data demonstrate that the innate immune response in the leech involves a cysteine proteinase inhibitor that is not found in ecdysozoan models, such as Drosophila melanogaster or Caenorhabditis elegans, and so underlines the great need for information about innate immunity mechanisms in different invertebrate groups.

Full Text

The Full Text of this article is available as a PDF (462.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali M., Markham A. F., Isaacs J. D. Application of differential display to immunological research. J Immunol Methods. 2001 Apr;250(1-2):29–43. doi: 10.1016/s0022-1759(01)00304-0. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anastasi A., Brown M. A., Kembhavi A. A., Nicklin M. J., Sayers C. A., Sunter D. C., Barrett A. J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J. 1983 Apr 1;211(1):129–138. doi: 10.1042/bj2110129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrera C., Ye G., Espejo R., Gunasena S., Almanza R., Leary J., Crowe S., Ernst P., Reyes V. E. Expression of cathepsins B, L, S, and D by gastric epithelial cells implicates them as antigen presenting cells in local immune responses. Hum Immunol. 2001 Oct;62(10):1081–1091. doi: 10.1016/s0198-8859(01)00281-6. [DOI] [PubMed] [Google Scholar]
  5. Barrett A. J., Fritz H., Grubb A., Isemura S., Järvinen M., Katunuma N., Machleidt W., Müller-Esterl W., Sasaki M., Turk V. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem J. 1986 May 15;236(1):312–312. doi: 10.1042/bj2360312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cimerman N., Mesko Brguljan P., Krasovec M., Suskovic S., Kos J. Serum concentration and circadian profiles of cathepsins B, H and L, and their inhibitors, stefins A and B, in asthma. Clin Chim Acta. 2001 Aug 20;310(2):113–122. doi: 10.1016/s0009-8981(01)00530-7. [DOI] [PubMed] [Google Scholar]
  7. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Gregorio E., Spellman P. T., Rubin G. M., Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A. 2001 Oct 16;98(22):12590–12595. doi: 10.1073/pnas.221458698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feys B. J., Parker J. E. Interplay of signaling pathways in plant disease resistance. Trends Genet. 2000 Oct;16(10):449–455. doi: 10.1016/s0168-9525(00)02107-7. [DOI] [PubMed] [Google Scholar]
  10. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green C. D., Simons J. F., Taillon B. E., Lewin D. A. Open systems: panoramic views of gene expression. J Immunol Methods. 2001 Apr;250(1-2):67–79. doi: 10.1016/s0022-1759(01)00306-4. [DOI] [PubMed] [Google Scholar]
  12. Hashimoto S., Suzuki T., Dong H. Y., Yamazaki N., Matsushima K. Serial analysis of gene expression in human monocytes and macrophages. Blood. 1999 Aug 1;94(3):837–844. [PubMed] [Google Scholar]
  13. Hildmann T., Ebneth M., Peña-Cortés H., Sánchez-Serrano J. J., Willmitzer L., Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffmann Jules A., Reichhart Jean-Marc. Drosophila innate immunity: an evolutionary perspective. Nat Immunol. 2002 Feb;3(2):121–126. doi: 10.1038/ni0202-121. [DOI] [PubMed] [Google Scholar]
  15. Hoffmann Jules A. The immune response of Drosophila. Nature. 2003 Nov 6;426(6962):33–38. doi: 10.1038/nature02021. [DOI] [PubMed] [Google Scholar]
  16. Houseweart Megan K., Pennacchio Len A., Vilaythong Alex, Peters Christoph, Noebels Jeffrey L., Myers Richard M. Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol. 2003 Sep 15;56(4):315–327. doi: 10.1002/neu.10253. [DOI] [PubMed] [Google Scholar]
  17. Irving P., Troxler L., Heuer T. S., Belvin M., Kopczynski C., Reichhart J. M., Hoffmann J. A., Hetru C. A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A. 2001 Dec 11;98(26):15119–15124. doi: 10.1073/pnas.261573998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karlin S., Altschul S. F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2264–2268. doi: 10.1073/pnas.87.6.2264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kos J., Lah T. T. Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review). Oncol Rep. 1998 Nov-Dec;5(6):1349–1361. doi: 10.3892/or.5.6.1349. [DOI] [PubMed] [Google Scholar]
  20. Krasnow S. W., Zhang L. Q., Leung K. Y., Osborn L., Kunkel S., Nabel G. J. Tumor necrosis factor-alpha, interleukin 1, and phorbol myristate acetate are independent activators of NF-kappa B which differentially activate T cells. Cytokine. 1991 Sep;3(5):372–379. doi: 10.1016/1043-4666(91)90040-k. [DOI] [PubMed] [Google Scholar]
  21. Lee Dong Gun, Park Yoonkyung, Kim Hee Nam, Kim Hyung Keun, Kim Pyoung Il, Choi Bo Hwa, Hahm Kyung-Soo. Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun. 2002 Mar 8;291(4):1006–1013. doi: 10.1006/bbrc.2002.6548. [DOI] [PubMed] [Google Scholar]
  22. Lemaitre B., Kromer-Metzger E., Michaut L., Nicolas E., Meister M., Georgel P., Reichhart J. M., Hoffmann J. A. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465–9469. doi: 10.1073/pnas.92.21.9465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lemaitre B., Nicolas E., Michaut L., Reichhart J. M., Hoffmann J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996 Sep 20;86(6):973–983. doi: 10.1016/s0092-8674(00)80172-5. [DOI] [PubMed] [Google Scholar]
  24. Levy Francine, Bulet Philippe, Ehret-Sabatier Laurence. Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics. 2003 Nov 28;3(2):156–166. doi: 10.1074/mcp.M300114-MCP200. [DOI] [PubMed] [Google Scholar]
  25. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  26. Lieuallen K., Pennacchio L. A., Park M., Myers R. M., Lennon G. G. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet. 2001 Sep 1;10(18):1867–1871. doi: 10.1093/hmg/10.18.1867. [DOI] [PubMed] [Google Scholar]
  27. Miller R. A., Garcia G., Kirk C. J., Witkowski J. M. Early activation defects in T lymphocytes from aged mice. Immunol Rev. 1997 Dec;160:79–90. doi: 10.1111/j.1600-065x.1997.tb01029.x. [DOI] [PubMed] [Google Scholar]
  28. Mitta G., Vandenbulcke F., Noël T., Romestand B., Beauvillain J. C., Salzet M., Roch P. Differential distribution and defence involvement of antimicrobial peptides in mussel. J Cell Sci. 2000 Aug;113(Pt 15):2759–2769. doi: 10.1242/jcs.113.15.2759. [DOI] [PubMed] [Google Scholar]
  29. Muno D., Kominami E., Mizuochi T. Generation of both MHC class I- and class II-restricted antigenic peptides from exogenously added ovalbumin in murine phagosomes. FEBS Lett. 2000 Jul 28;478(1-2):178–182. doi: 10.1016/s0014-5793(00)01849-4. [DOI] [PubMed] [Google Scholar]
  30. Muñoz Marcelo, Vandenbulcke Franck, Saulnier Denis, Bachère Evelyne. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur J Biochem. 2002 Jun;269(11):2678–2689. doi: 10.1046/j.1432-1033.2002.02934.x. [DOI] [PubMed] [Google Scholar]
  31. Pennacchio L. A., Bouley D. M., Higgins K. M., Scott M. P., Noebels J. L., Myers R. M. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet. 1998 Nov;20(3):251–258. doi: 10.1038/3059. [DOI] [PubMed] [Google Scholar]
  32. Pennacchio L. A., Lehesjoki A. E., Stone N. E., Willour V. L., Virtaneva K., Miao J., D'Amato E., Ramirez L., Faham M., Koskiniemi M. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1) Science. 1996 Mar 22;271(5256):1731–1734. doi: 10.1126/science.271.5256.1731. [DOI] [PubMed] [Google Scholar]
  33. Pol E., Björk I. Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases. Protein Sci. 2001 Sep;10(9):1729–1738. doi: 10.1110/ps.11901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pütsep K., Brändén C. I., Boman H. G., Normark S. Antibacterial peptide from H. pylori. Nature. 1999 Apr 22;398(6729):671–672. doi: 10.1038/19439. [DOI] [PubMed] [Google Scholar]
  35. Pütsep K., Normark S., Boman H. G. The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1. FEBS Lett. 1999 May 28;451(3):249–252. doi: 10.1016/s0014-5793(99)00582-7. [DOI] [PubMed] [Google Scholar]
  36. Rawlings N. D., Barrett A. J. Evolution of proteins of the cystatin superfamily. J Mol Evol. 1990 Jan;30(1):60–71. doi: 10.1007/BF02102453. [DOI] [PubMed] [Google Scholar]
  37. Reverter D., Sorimachi H., Bode W. The structure of calcium-free human m-calpain: implications for calcium activation and function. Trends Cardiovasc Med. 2001 Aug;11(6):222–229. doi: 10.1016/s1050-1738(01)00112-8. [DOI] [PubMed] [Google Scholar]
  38. Riccio M., Di Giaimo R., Pianetti S., Palmieri P. P., Melli M., Santi S. Nuclear localization of cystatin B, the cathepsin inhibitor implicated in myoclonus epilepsy (EPM1). Exp Cell Res. 2001 Jan 15;262(2):84–94. doi: 10.1006/excr.2000.5085. [DOI] [PubMed] [Google Scholar]
  39. Riese R. J., Chapman H. A. Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol. 2000 Feb;12(1):107–113. doi: 10.1016/s0952-7915(99)00058-8. [DOI] [PubMed] [Google Scholar]
  40. Sachs A. B., Deardorff J. A. Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast. Cell. 1992 Sep 18;70(6):961–973. doi: 10.1016/0092-8674(92)90246-9. [DOI] [PubMed] [Google Scholar]
  41. Salzet M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol. 2001 Jun;22(6):285–288. doi: 10.1016/s1471-4906(01)01895-6. [DOI] [PubMed] [Google Scholar]
  42. Samach A., Broday L., Hareven D., Lifschitz E. Expression of an amino acid biosynthesis gene in tomato flowers: developmental upregulation and MeJa response are parenchyma-specific and mutually compatible. Plant J. 1995 Sep;8(3):391–406. doi: 10.1046/j.1365-313x.1995.08030391.x. [DOI] [PubMed] [Google Scholar]
  43. Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  44. Schierack Peter, Lucius Richard, Sonnenburg Bettina, Schilling Klaus, Hartmann Susanne. Parasite-specific immunomodulatory functions of filarial cystatin. Infect Immun. 2003 May;71(5):2422–2429. doi: 10.1128/IAI.71.5.2422-2429.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Suzuki T., Hashimoto S., Toyoda N., Nagai S., Yamazaki N., Dong H. Y., Sakai J., Yamashita T., Nukiwa T., Matsushima K. Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood. 2000 Oct 1;96(7):2584–2591. [PubMed] [Google Scholar]
  46. Takeuchi Hideaki, Fujiyuki Tomoko, Shirai Kenichi, Matsuo Yuko, Kamikouchi Azusa, Fujinawa Yumi, Kato Azusa, Tsujimoto Atsumi, Kubo Takeo. Identification of genes expressed preferentially in the honeybee mushroom bodies by combination of differential display and cDNA microarray. FEBS Lett. 2002 Feb 27;513(2-3):230–234. doi: 10.1016/s0014-5793(02)02319-0. [DOI] [PubMed] [Google Scholar]
  47. Thiele U., Auerswald E. A., Gebhard W., Assfalg-Machleidt I., Popović T., Machleidt W. Inhibitorily active recombinant human stefin B. Gene synthesis, expression and isolation of an inhibitory active MS-2 pol-stefin B fusion protein and preparation of Des[Met1,2(2)]stefin B. Biol Chem Hoppe Seyler. 1988 Oct;369(10):1167–1178. doi: 10.1515/bchm3.1988.369.2.1167. [DOI] [PubMed] [Google Scholar]
  48. Thomma B. P., Eggermont K., Tierens K. F., Broekaert W. F. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 1999 Dec;121(4):1093–1102. doi: 10.1104/pp.121.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tryselius Y., Hultmark D. Cysteine proteinase 1 (CP1), a cathepsin L-like enzyme expressed in the Drosophila melanogaster haemocyte cell line mbn-2. Insect Mol Biol. 1997 May;6(2):173–181. doi: 10.1111/j.1365-2583.1997.tb00085.x. [DOI] [PubMed] [Google Scholar]
  50. Turk B., Colić A., Stoka V., Turk V. Kinetics of inhibition of bovine cathepsin S by bovine stefin B. FEBS Lett. 1994 Feb 14;339(1-2):155–159. doi: 10.1016/0014-5793(94)80405-2. [DOI] [PubMed] [Google Scholar]
  51. Vierstraete Evy, Verleyen Peter, Baggerman Geert, D'Hertog Wannes, Van den Bergh Gert, Arckens Lutgarde, De Loof Arnold, Schoofs Liliane. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc Natl Acad Sci U S A. 2004 Jan 5;101(2):470–475. doi: 10.1073/pnas.0304567101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yang H., Duckett C. S., Lindsten T. iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol Cell Biol. 1995 Dec;15(12):6770–6776. doi: 10.1128/mcb.15.12.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES