Abstract
We have employed conjugal transfer of an F' lac episome to examine targeted and untargeted mutagenesis in the lacI gene of Escherichia coli and to determine the relative importance of pyrimidine dimers as premutational UV lesions compared to (6-4) photoproducts that also may have a mutational role. This conjugal system allowed us to assess the premutagenic role of UV lesions independently from any role as inducers of SOS functions. F' DNA was transferred to an SOS-induced recipient strain from: unirradiated donor cells, UV-treated donor cells or donor cells that were irradiated and then exposed to photoreactivating light. The results indicate that SOS-related, untargeted events may account for as much as one-third of the nonsense mutations (i.e., base substitutions) recovered after undamaged F' DNA is transferred to UV-irradiated recipients. When the donor strain also is irradiated, in excess of 90% of the mutations detected following conjugation appear to be targeted. Photoreactivation of the UV-treated donor cells, prior to F' transfer to the SOS-induced recipient strain, demonstrated that in this experimental system virtually all recovered UV-induced mutations are targeted by photoreactivable lesions. We presume that these lesions are pyrimidine dimers because (6-4) photoproducts are not photoreactivable.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borek E., Ryan A. THE TRANSFER OF IRRADIATION-ELICITED INDUCTION IN A LYSOGENIC ORGANISM. Proc Natl Acad Sci U S A. 1958 May;44(5):374–377. doi: 10.1073/pnas.44.5.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
- DEVORET R. INFLUENCE DU G'ENOTYPE DE LA BACT'ERIE H OTE SUR LA MUTATION DU PHAGE LAMBDA PRODUITE PAR LE RAYONNEMENT ULTRAVIOLET. C R Hebd Seances Acad Sci. 1965 Feb 1;260:1510–1513. [PubMed] [Google Scholar]
- Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. doi: 10.1016/0042-6822(71)90321-7. [DOI] [PubMed] [Google Scholar]
- Foster P. L., Eisenstadt E. Distribution and specificity of mutations induced by neocarzinostatin in the lacI gene of Escherichia coli. J Bacteriol. 1983 Jan;153(1):379–383. doi: 10.1128/jb.153.1.379-383.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster P. L., Eisenstadt E., Miller J. H. Base substitution mutations induced by metabolically activated aflatoxin B1. Proc Natl Acad Sci U S A. 1983 May;80(9):2695–2698. doi: 10.1073/pnas.80.9.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George J., Devoret R. Conjugal transfer of UV-damaged F-prime sex factors and indirect induction of prophage- . Mol Gen Genet. 1971;111(2):103–119. doi: 10.1007/BF00267786. [DOI] [PubMed] [Google Scholar]
- George J., Devoret R., Radman M. Indirect ultraviolet-reactivation of phage lambda. Proc Natl Acad Sci U S A. 1974 Jan;71(1):144–147. doi: 10.1073/pnas.71.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F. Mutation d'un bactériophage induite par l'irradiation des seules bactéries-hotes avant l'infection. C R Hebd Seances Acad Sci. 1954 Feb 8;238(6):732–734. [PubMed] [Google Scholar]
- Kato T., Nakano E. Effects of the umuC36 mutation on ultraviolet-radiation-induced base-change and frameshift mutations in Escherichia coli. Mutat Res. 1981 Oct;83(3):307–319. doi: 10.1016/0027-5107(81)90014-2. [DOI] [PubMed] [Google Scholar]
- Kimball R. F. The relation of repair phenomena to mutation induction in bacteria. Mutat Res. 1978;55(2):85–120. doi: 10.1016/0165-1110(78)90018-0. [DOI] [PubMed] [Google Scholar]
- Lawrence C. W., Christensen R. B. Absence of relationship between UV-induced reversion frequency and nucleotide sequence at the CYC1 locus of yeast. Mol Gen Genet. 1979;177(1):31–38. doi: 10.1007/BF00267250. [DOI] [PubMed] [Google Scholar]
- Moreau P. L., Pelico J. V., Devoret R. Cleavage of lambda repressor and synthesis of RecA protein induced by transferred UV-damaged F sex factor. Mol Gen Genet. 1982;186(2):170–179. doi: 10.1007/BF00331847. [DOI] [PubMed] [Google Scholar]
- Ohki M., Tomizawa J. Asymmetric transfer of DNA strands in bacterial conjugation. Cold Spring Harb Symp Quant Biol. 1968;33:651–658. doi: 10.1101/sqb.1968.033.01.074. [DOI] [PubMed] [Google Scholar]
- Person S., McCloskey J. A., Snipes W., Bockrath R. C. Ultraviolet mutagenesis and its repair in an Escherichia coli strain containing a nonsense codon. Genetics. 1974 Dec;78(4):1035–1049. doi: 10.1093/genetics/78.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villani G., Boiteux S., Radman M. Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3037–3041. doi: 10.1073/pnas.75.7.3037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkin E. M., Wermundsen I. E. Targeted and untargeted mutagenesis by various inducers of SOS functions in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):881–886. doi: 10.1101/sqb.1979.043.01.095. [DOI] [PubMed] [Google Scholar]