Abstract
Twelve restriction enzymes were used to screen for the presence or absence of cleavage sites at 441 locations in the mitochondrial DNA of 112 humans from four continents. Cleavage maps were constructed by comparison of DNA fragment sizes with those expected from the published sequence for one human mtDNA. One hundred and sixty-three of the sites were polymorphic, i.e., present in some individuals but absent from others, 278 sites being invariant. These polymorphisms probably result from single base substitutions and occur in all functional regions of the genome.—In 77 cases, it was possible to specify the exact nature and location (within a restriction site) of the mutation responsible for the absence of a restriction site in a known human mtDNA sequence and its presence in another human mtDNA. Fifty-two of these 77 gain mutations occur in genes coding for proteins, 34 being silent and 18 causing amino acid replacements; moreover, nine of the replacements are radical.—Notable also is the anomalous ratio of transitions to transversions required to account for these 77 restriction site differences between the known human mtDNA sequences and other human mtDNAs. This ratio is lower for most groups of restriction sites than has been reported from sequence comparisons of limited parts of the mtDNA genome in closely related mammals, perhaps indicating a special functional role or sensitivity to mutagenesis for palindromic regions containing high levels of guanine and cytosine.—From the genomic distribution of the 163 polymorphic sites, it is inferred that the level of point mutational variability in tRNA and rRNA genes is nearly as high as in protein-coding genes but lower than in noncoding mtDNA. Thus, the functional constraints operating on components of the protein-synthetic apparatus may be lower for mitochondria than for other systems. Furthermore, the mitochondrial genes for tRNAs that recognize four codons are more variable than those recognizing only two codons.—Among the more variable of the human mitochondrial genes coding for proteins is that for subunit 2 of cytochrome oxidase; this polypeptide appears to have been evolving about five times faster in primates than in other mammals. Cytochrome c, a nuclearly encoded protein that interacts directly with the oxidase 2 subunit in electron transport, has also evolved faster in primates than in rodents or ungulates. This example, along with that for the mitochondrial rRNA genes and the nuclear genes coding for mitochondrial ribosomal proteins, provides evidence for coevolution between specific nuclear and mitochondrial genes.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Borst P., Grivell L. A. Small is beautiful--portrait of a mitochondrial genome. Nature. 1981 Apr 9;290(5806):443–444. doi: 10.1038/290443a0. [DOI] [PubMed] [Google Scholar]
- Brimacombe R., Maly P., Zwieb C. The structure of ribosomal RNA and its organization relative to ribosomal protein. Prog Nucleic Acid Res Mol Biol. 1983;28:1–48. doi: 10.1016/s0079-6603(08)60081-1. [DOI] [PubMed] [Google Scholar]
- Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. M. Mechanisms of evolution in animal mitochondrial DNA. Ann N Y Acad Sci. 1981;361:119–134. doi: 10.1111/j.1749-6632.1981.tb46515.x. [DOI] [PubMed] [Google Scholar]
- Brown W. M. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3605–3609. doi: 10.1073/pnas.77.6.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cann R. L., Wilson A. C. Length mutations in human mitochondrial DNA. Genetics. 1983 Aug;104(4):699–711. doi: 10.1093/genetics/104.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson S. S., Mross G. A., Wilson A. C., Mead R. T., Wolin L. D., Bowers S. F., Foley N. T., Muijsers A. O., Margoliash E. Primary structure of mouse, rat, and guinea pig cytochrome c. Biochemistry. 1977 Apr 5;16(7):1437–1442. doi: 10.1021/bi00626a031. [DOI] [PubMed] [Google Scholar]
- Ching E., Attardi G. High-resolution electrophoretic fractionation and partial characterization of the mitochondrial translation products from HeLa cells. Biochemistry. 1982 Jun 22;21(13):3188–3195. doi: 10.1021/bi00256a024. [DOI] [PubMed] [Google Scholar]
- Ferris S. D., Ritte U., Lindahl K. F., Prager E. M., Wilson A. C. Unusual type of mitochondrial DNA in mice lacking a maternally transmitted antigen. Nucleic Acids Res. 1983 May 11;11(9):2917–2926. doi: 10.1093/nar/11.9.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferris S. D., Sage R. D., Prager E. M., Ritte U., Wilson A. C. Mitochondrial DNA evolution in mice. Genetics. 1983 Nov;105(3):681–721. doi: 10.1093/genetics/105.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferris S. D., Wilson A. C., Brown W. M. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2432–2436. doi: 10.1073/pnas.78.4.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
- Gavrilova L. P., Perminova I. N., Spirin A. S. Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systems. J Mol Biol. 1981 Jun 15;149(1):69–78. doi: 10.1016/0022-2836(81)90260-6. [DOI] [PubMed] [Google Scholar]
- Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974 Sep 6;185(4154):862–864. doi: 10.1126/science.185.4154.862. [DOI] [PubMed] [Google Scholar]
- Greenberg B. D., Newbold J. E., Sugino A. Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene. 1983 Jan-Feb;21(1-2):33–49. doi: 10.1016/0378-1119(83)90145-2. [DOI] [PubMed] [Google Scholar]
- Jukes T. H. Amino acid codes in mitochondria as possible clues to primitive codes. J Mol Evol. 1981;18(1):15–17. doi: 10.1007/BF01733206. [DOI] [PubMed] [Google Scholar]
- Lipman D. J., Wilbur W. J. Contextual constraints on synonymous codon choice. J Mol Biol. 1983 Jan 25;163(3):363–376. doi: 10.1016/0022-2836(83)90063-3. [DOI] [PubMed] [Google Scholar]
- Mariottini P., Chomyn A., Attardi G., Trovato D., Strong D. D., Doolittle R. F. Antibodies against synthetic peptides reveal that the unidentified reading frame A6L, overlapping the ATPase 6 gene, is expressed in human mitochondria. Cell. 1983 Apr;32(4):1269–1277. doi: 10.1016/0092-8674(83)90308-2. [DOI] [PubMed] [Google Scholar]
- Matthews D. E., Hessler R. A., O'Brien T. W. Rapid evolutionary divergence of proteins in mammalian mitochondrial ribosomes. FEBS Lett. 1978 Feb 1;86(1):76–80. doi: 10.1016/0014-5793(78)80102-1. [DOI] [PubMed] [Google Scholar]
- Miyata T., Hayashida H., Kikuno R., Hasegawa M., Kobayashi M., Koike K. Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol. 1982;19(1):28–35. doi: 10.1007/BF02100221. [DOI] [PubMed] [Google Scholar]
- Osheroff N., Speck S. H., Margoliash E., Veerman E. C., Wilms J., König B. W., Muijsers A. O. The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. J Biol Chem. 1983 May 10;258(9):5731–5738. [PubMed] [Google Scholar]
- Toivonen L. A., Crowe D. T., Detrick R. J., Klemann S. W., Vaughn J. C. Ribosomal RNA gene number and sequence divergence in the diploid-tetraploid species pair of North American hylid tree frogs. Biochem Genet. 1983 Apr;21(3-4):299–308. doi: 10.1007/BF00499140. [DOI] [PubMed] [Google Scholar]
- Torczynski R., Bollon A. P., Fuke M. The complete nucleotide sequence of the rat 18S ribosomal RNA gene and comparison with the respective yeast and frog genes. Nucleic Acids Res. 1983 Jul 25;11(14):4879–4890. doi: 10.1093/nar/11.14.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarus M. The accuracy of translation. Prog Nucleic Acid Res Mol Biol. 1979;23:195–225. doi: 10.1016/s0079-6603(08)60134-8. [DOI] [PubMed] [Google Scholar]