Skip to main content
Genetics logoLink to Genetics
. 1984 Mar;106(3):529–548. doi: 10.1093/genetics/106.3.529

The Evolution of Multigene Families under Intrachromosomal Gene Conversion

Thomas Nagylaki 1
PMCID: PMC1224255  PMID: 6706112

Abstract

A model for the evolution of the probabilities of genetic identity within and between loci of a multigene family in a finite population is formulated and investigated. Unbiased intrachromosomal gene conversion, equal crossing over between tandemly repeated genes, random genetic drift and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. Formulas for the equilibrium values of the probabilities of identity and a cubic equation for the rate of convergence are deduced. Numerical examples indicate the following. The amount of homology at equilibrium generally decreases as the mutation rate, the population size and the number of repeats increase; it may increase or decrease with increasing crossover rate. The intralocus homology has an intermediate minimum, whereas the interlocus homology increases, as the rate of gene conversion increases. The intralocus homology decreases, whereas the interlocus homology increases, as the proportion of symmetric heteroduplexes increases. The characteristic convergence time can be sufficiently short to imply that intrachromosomal gene conversion may be an important mechanism for maintaining sequence homogeneity among repeated genes. The convergence time decreases as the conversion rate and the proportion of symmetric heteroduplexes increase; although exceptions occur, it generally increases as the population size and the number of repeats increase; it may increase or decrease with increasing crossover rate.

Full Text

The Full Text of this article is available as a PDF (903.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Nagylaki T. Evolution of a large population under gene conversion. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5941–5945. doi: 10.1073/pnas.80.19.5941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ohta T. Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci U S A. 1982 May;79(10):3251–3254. doi: 10.1073/pnas.79.10.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ohta T., Dover G. A. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4079–4083. doi: 10.1073/pnas.80.13.4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. doi: 10.1016/0040-5809(83)90015-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES