Abstract
This paper describes a mutator system in the nematode Caenorhabditis elegans var. Bergerac for the gene unc-22. Of nine C. elegans and two C. briggsae strains tested only the Bergerac BO strain yielded mutant animals at a high frequency and the unc-22 IV gene is a preferred mutational target. The forward spontaneous mutation frequency at the unc-22 locus in Bergerac BO is about 1 x 10-4 , and most of these spontaneous unc-22 mutations revert at frequencies between 2 x 10-3 and 2 x 10 -4. Both the forward mutation frequency and the reversion frequency are sensitive to genetic background. Spontaneous unc-22 mutations derived in a Bergerac background and placed in a primarily Bristol background revert at frequencies of <10-6. When reintroduced into a Bergerac/Bristol hybrid background the mutations once again become unstable.
The mutator activity could not be localized to a discrete site in the Bergerac genome. Nor did mutator activity require the Bergerac unc-22 gene as a target since the Bristol unc-22 homolog placed in a Bergerac background also showed high mutation frequency. Intragenic mapping of two spontaneous unc-22 alleles, st136 and st137, place both mutations in the central region of the known unc-22 map. However, these mutations probably recombine with one another, suggesting that the unstable mutations can occur in more than one site in unc-22. Examination of the phenotypic effect of these mutations on muscle structure indicates that they are less severe in their effect than a known amber allele. We suggest that this mutator system is polygenic and dispersed over the nematode genome and could represent activity of the transposable element Tc1.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bridges C. B. THE BAR "GENE" A DUPLICATION. Science. 1936 Feb 28;83(2148):210–211. doi: 10.1126/science.83.2148.210. [DOI] [PubMed] [Google Scholar]
- Cameron J. R., Loh E. Y., Davis R. W. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell. 1979 Apr;16(4):739–751. doi: 10.1016/0092-8674(79)90090-4. [DOI] [PubMed] [Google Scholar]
- Collins M., Rubin G. M. High-frequency precise excision of the Drosophila foldback transposable element. Nature. 1983 May 19;303(5914):259–260. doi: 10.1038/303259a0. [DOI] [PubMed] [Google Scholar]
- Collins M., Rubin G. M. Structure of the Drosophila mutable allele, white-crimson, and its white-ivory and wild-type derivatives. Cell. 1982 Aug;30(1):71–79. doi: 10.1016/0092-8674(82)90013-7. [DOI] [PubMed] [Google Scholar]
- Demerec M. Miniature-alpha-A Second Frequently Mutating Character in Drosophila Virilis. Proc Natl Acad Sci U S A. 1926 Dec;12(12):687–690. doi: 10.1073/pnas.12.12.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dion M., Brun J. L. Cartographie génique du nématode libre Caenorhabditis elegans, Maupas 1900, variété Bergerac. I. Etude de deux mutants nains. Mol Gen Genet. 1971;112(2):133–151. doi: 10.1007/BF00267491. [DOI] [PubMed] [Google Scholar]
- Egner C., Berg D. E. Excision of transposon Tn5 is dependent on the inverted repeats but not on the transposase function of Tn5. Proc Natl Acad Sci U S A. 1981 Jan;78(1):459–463. doi: 10.1073/pnas.78.1.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emmons S. W., Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell. 1984 Mar;36(3):599–605. doi: 10.1016/0092-8674(84)90339-8. [DOI] [PubMed] [Google Scholar]
- Engels W. R. The P family of transposable elements in Drosophila. Annu Rev Genet. 1983;17:315–344. doi: 10.1146/annurev.ge.17.120183.001531. [DOI] [PubMed] [Google Scholar]
- Foster T. J., Lundblad V., Hanley-Way S., Halling S. M., Kleckner N. Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell. 1981 Jan;23(1):215–227. doi: 10.1016/0092-8674(81)90286-5. [DOI] [PubMed] [Google Scholar]
- Green M. M. Genetic instability in Drosophila melanogaster: De novo induction of putative insertion mutations. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3490–3493. doi: 10.1073/pnas.74.8.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. M. The genetics of a mutable gene at the white locus of Drosophila melanogaster. Genetics. 1967 Jul;56(3):467–482. doi: 10.1093/genetics/56.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. M. Transposable elements in Drosophila and other Diptera. Annu Rev Genet. 1980;14:109–120. doi: 10.1146/annurev.ge.14.120180.000545. [DOI] [PubMed] [Google Scholar]
- Greenwald I. S., Horvitz H. R. Dominant suppressors of a muscle mutant define an essential gene of Caenorhabditis elegans. Genetics. 1982 Jun;101(2):211–225. doi: 10.1093/genetics/101.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCLINTOCK B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol. 1956;21:197–216. doi: 10.1101/sqb.1956.021.01.017. [DOI] [PubMed] [Google Scholar]
- Moerman D. G., Baillie D. L. Genetic Organization in CAENORHABDITIS ELEGANS: Fine-Structure Analysis of the unc-22 Gene. Genetics. 1979 Jan;91(1):95–103. doi: 10.1093/genetics/91.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reha-Krantz L. J., Liesner E. M. Mutagenic specificity of a novel T4 DNA polymerase mutant. Genetics. 1984 Mar;106(3):335–345. doi: 10.1093/genetics/106.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roeder G. S., Farabaugh P. J., Chaleff D. T., Fink G. R. The origins of gene instability in yeast. Science. 1980 Sep 19;209(4463):1375–1380. doi: 10.1126/science.6251544. [DOI] [PubMed] [Google Scholar]
- Rogalski T. M., Moerman D. G., Baillie D. L. Essential genes and deficiencies in the unc-22 IV region of Caenorhabditis elegans. Genetics. 1982 Dec;102(4):725–736. doi: 10.1093/genetics/102.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenzweig B., Liao L. W., Hirsh D. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 1983 Jun 25;11(12):4201–4209. doi: 10.1093/nar/11.12.4201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
- Sturtevant A H. The Effects of Unequal Crossing over at the Bar Locus in Drosophila. Genetics. 1925 Mar;10(2):117–147. doi: 10.1093/genetics/10.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson M. M., Riddle D. L. Critical periods in the development of the Caenorhabditis elegans dauer larva. Dev Biol. 1981 May;84(1):27–40. doi: 10.1016/0012-1606(81)90367-5. [DOI] [PubMed] [Google Scholar]
- Voelker R. A., Greenleaf A. L., Gyurkovics H., Wisely G. B., Huang S. M., Searles L. L. Frequent Imprecise Excision among Reversions of a P Element-Caused Lethal Mutation in Drosophila. Genetics. 1984 Jun;107(2):279–294. doi: 10.1093/genetics/107.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterston R. H., Smith K. C., Moerman D. G. Genetic fine structure analysis of the myosin heavy chain gene unc-54 of Caenorhabditis elegans. J Mol Biol. 1982 Jun 15;158(1):1–15. doi: 10.1016/0022-2836(82)90447-8. [DOI] [PubMed] [Google Scholar]
- Waterston R. H., Thomson J. N., Brenner S. Mutants with altered muscle structure of Caenorhabditis elegans. Dev Biol. 1980 Jun 15;77(2):271–302. doi: 10.1016/0012-1606(80)90475-3. [DOI] [PubMed] [Google Scholar]
- Zieg J., Silverman M., Hilmen M., Simon M. Recombinational switch for gene expression. Science. 1977 Apr 8;196(4286):170–172. doi: 10.1126/science.322276. [DOI] [PubMed] [Google Scholar]