Skip to main content
Genetics logoLink to Genetics
. 1974 Nov;78(3):921–936. doi: 10.1093/genetics/78.3.921

Linkage Disequilibrium in Natural Populations of DROSOPHILA MELANOGASTER

Charles H Langley, Yoshiko N Tobari, Ken-Ichi Kojima
PMCID: PMC1224565  PMID: 4217750

Abstract

Two large, stable populations (Texas and Japan) of Drosophila melanogaster were surveyed at 21 allozyme loci on the second and third chromosomes and for chromosomal gene arrangements on those two chromosomes. Over 220 independent gametes were sampled from each population. The types and frequencies of the surveyed genetic variation are similar to those observed previously and suggest only slight differentiation among geographically distant populations. Linkage disequilibrium among linked allozymes loci is only slightly, if at all, detectable with these sample sizes. Linkage disequilibrium between linked inversions and allozymes loci is common especially when located in the same arm. These disequilibria appear to be in the same direction for most comparisons in the two population samples. This result is interpreted as evidence of similar selective environments (ecological and genetic) in the two populations. It is also noted that the direction of these linkage disequilibria appears to be oriented with respect to the gene frequencies at the component loci.

Full Text

The Full Text of this article is available as a PDF (956.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Mukai T., Mettler L. E., Chigusa S. I. Linkage disequilibrium in a local population of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 May;68(5):1065–1069. doi: 10.1073/pnas.68.5.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ohta T., Kimura M. Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics. 1969 Sep;63(1):229–238. doi: 10.1093/genetics/63.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. POULIK M. D. Starch gel electrophoresis in a discontinous system of buffers. Nature. 1957 Dec 28;180(4600):1477–1479. doi: 10.1038/1801477a0. [DOI] [PubMed] [Google Scholar]
  5. Prakash S., Lewontin R. C. A molecular approach to the study of genic heterozygosity in natural populations. 3. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc Natl Acad Sci U S A. 1968 Feb;59(2):398–405. doi: 10.1073/pnas.59.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sinnock P., Sing C. F. Analysis of multilocus genetic systems in Tecumseh, Michigan. II. Consideration of the correlation between nonalleles in gametes. Am J Hum Genet. 1972 Jul;24(4):393–415. [PMC free article] [PubMed] [Google Scholar]
  7. Zouros E., Krimbas C. B. Evidence for Linkage Disequilibrium Maintained by Selection in Two Natural Populations of DROSOPHILA SUBOBSCURA. Genetics. 1973 Apr;73(4):659–674. doi: 10.1093/genetics/73.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES