Abstract
Grove et al. have demonstrated L-type Ca2+ channel activity of a synthetic channel peptide (SCP) composed of four helices (sequence: DPWNVFDFLI10VIGSIIDVIL20SE) tethered by their C-termini to a nanopeptide template. We sought to obtain the optimal conformations of SCP and locate the binding sites for Ca2+ and for the dihydropyridine ligand nifedipine. Eight Ca2+ ions were added to neutralize the 16 acidic residues in the helices. Eight patterns of the salt bridges between Ca2+ ions and pairs of the acidic residues were calculated by the Monte Carlo-with-energy-minimization (MCM) protocol. In the energetically optimal conformation, two Ca2+ ions were bound to Asp-1 residues at the intracellular side of SCP, and six Ca2+ ions were arrayed in two files at the diametrically opposite sides of the pore, implying a Ca2+ relay mechanism. Nine modes of nifedipine binding to SCP were simulated by the MCM calculations. In the energetically optimal mode, the ligand fits snugly in the pore. The complex is stabilized by Ca2+ bound between two Asp-17 residues and hydrophilic groups of the ligand. The latter substitute water molecules adjacent to Ca2+ in the ligand-free pore and thus do not obstruct Ca2+ relay. The ligand-binding site is proximal to a hydrophobic bracelet of Ile-10 residues whose rotation is sterically hindered. In some conformations, the bracelet is narrow enough to block the permeation of the hydrated Ca2+ ions. The bracelet may thus act as a "gate" in SCP. Nifedipine and (R)-Bay K 8644, which act as blockers of the SCP, extend a side-chain hydrophobic moiety toward the Ile-10 residues. This would stabilize the pore-closing conformation of the gate. In contrast, the channel activator (S)-Bay K 8644 exposes a hydrophilic moiety toward the Ile-10 residues, thus destabilizing the pore-closing conformation of the gate.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abagyan R., Argos P. Optimal protocol and trajectory visualization for conformational searches of peptides and proteins. J Mol Biol. 1992 May 20;225(2):519–532. doi: 10.1016/0022-2836(92)90936-e. [DOI] [PubMed] [Google Scholar]
- Almers W., McCleskey E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol. 1984 Aug;353:585–608. doi: 10.1113/jphysiol.1984.sp015352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W., McCleskey E. W., Palade P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol. 1984 Aug;353:565–583. doi: 10.1113/jphysiol.1984.sp015351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ananthanarayanan V. S. Peptide hormones, neurotransmitters, and drugs as Ca2+ ionophores: implications for signal transduction. Biochem Cell Biol. 1991 Feb-Mar;69(2-3):93–95. doi: 10.1139/o91-014. [DOI] [PubMed] [Google Scholar]
- Ananthanarayanan V. S., Taylor L. B., Pirritano S. Transport of Ca2+ by diltiazem across the lipid bilayer in model liposomes. Biochem Cell Biol. 1992 Jul;70(7):608–612. doi: 10.1139/o92-093. [DOI] [PubMed] [Google Scholar]
- Ananthanarayanan V. S., Tetreault S., Saint-Jean A. Interaction of calcium channel antagonists with calcium: spectroscopic and modeling studies on diltiazem and its Ca2+ complex. J Med Chem. 1993 May 14;36(10):1324–1332. doi: 10.1021/jm00062a004. [DOI] [PubMed] [Google Scholar]
- Armstrong C. M., Miller C. Do voltage-dependent K+ channels require Ca2+? A critical test employing a heterologous expression system. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7579–7582. doi: 10.1073/pnas.87.19.7579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belciug M. P., Ananthanarayanan V. S. Interaction of calcium channel antagonists with calcium: structural studies on nicardipine and its Ca2+ complex. J Med Chem. 1994 Dec 9;37(25):4392–4399. doi: 10.1021/jm00051a017. [DOI] [PubMed] [Google Scholar]
- Catterall W. A., Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci. 1992 Jun;13(6):256–262. doi: 10.1016/0165-6147(92)90079-l. [DOI] [PubMed] [Google Scholar]
- Flockerzi V., Oeken H. J., Hofmann F. Purification of a functional receptor for calcium-channel blockers from rabbit skeletal-muscle microsomes. Eur J Biochem. 1986 Nov 17;161(1):217–224. doi: 10.1111/j.1432-1033.1986.tb10145.x. [DOI] [PubMed] [Google Scholar]
- Glossmann H., Ferry D. R. Solubilization and partial purification of putative calcium channels labelled with [3H]-nimodipine. Naunyn Schmiedebergs Arch Pharmacol. 1983 Aug;323(4):279–291. doi: 10.1007/BF00512465. [DOI] [PubMed] [Google Scholar]
- Gould R. J., Murphy K. M., Snyder S. H. Tissue heterogeneity of calcium channel antagonist binding sites labeled by [3H]nitrendipine. Mol Pharmacol. 1984 Mar;25(2):235–241. [PubMed] [Google Scholar]
- Grove A., Tomich J. M., Iwamoto T., Montal M. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels. Protein Sci. 1993 Nov;2(11):1918–1930. doi: 10.1002/pro.5560021113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grove A., Tomich J. M., Montal M. A molecular blueprint for the pore-forming structure of voltage-gated calcium channels. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6418–6422. doi: 10.1073/pnas.88.15.6418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guy H. R., Conti F. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 1990 Jun;13(6):201–206. doi: 10.1016/0166-2236(90)90160-c. [DOI] [PubMed] [Google Scholar]
- Heinemann S. H., Terlau H., Stühmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992 Apr 2;356(6368):441–443. doi: 10.1038/356441a0. [DOI] [PubMed] [Google Scholar]
- Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
- Kalasz H., Watanabe T., Yabana H., Itagaki K., Naito K., Nakayama H., Schwartz A., Vaghy P. L. Identification of 1,4-dihydropyridine binding domains within the primary structure of the alpha 1 subunit of the skeletal muscle L-type calcium channel. FEBS Lett. 1993 Sep 27;331(1-2):177–181. doi: 10.1016/0014-5793(93)80321-k. [DOI] [PubMed] [Google Scholar]
- Kass R. S., Arena J. P., Chin S. Block of L-type calcium channels by charged dihydropyridines. Sensitivity to side of application and calcium. J Gen Physiol. 1991 Jul;98(1):63–75. doi: 10.1085/jgp.98.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim M. S., Morii T., Sun L. X., Imoto K., Mori Y. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 1993 Mar 1;318(2):145–148. doi: 10.1016/0014-5793(93)80009-j. [DOI] [PubMed] [Google Scholar]
- Knaus H. G., Moshammer T., Kang H. C., Haugland R. P., Glossmann H. A unique fluorescent phenylalkylamine probe for L-type Ca2+ channels. Coupling of phenylalkylamine receptors to Ca2+ and dihydropyridine binding sites. J Biol Chem. 1992 Feb 5;267(4):2179–2189. [PubMed] [Google Scholar]
- Kokubun S., Prod'hom B., Becker C., Porzig H., Reuter H. Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol. 1986 Dec;30(6):571–584. [PubMed] [Google Scholar]
- Kuo C. C., Hess P. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol. 1993 Jul;466:657–682. [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Hess P. Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. J Physiol. 1993 Jul;466:629–655. [PMC free article] [PubMed] [Google Scholar]
- Labarca C., Nowak M. W., Zhang H., Tang L., Deshpande P., Lester H. A. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature. 1995 Aug 10;376(6540):514–516. doi: 10.1038/376514a0. [DOI] [PubMed] [Google Scholar]
- Langs D. A., Strong P. D., Triggle D. J. Receptor model for the molecular basis of tissue selectivity of 1, 4-dihydropyridine calcium channel drugs. J Comput Aided Mol Des. 1990 Sep;4(3):215–230. doi: 10.1007/BF00125011. [DOI] [PubMed] [Google Scholar]
- McCleskey E. W., Almers W. The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7149–7153. doi: 10.1073/pnas.82.20.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikala G., Bahinski A., Yatani A., Tang S., Schwartz A. Differential contribution by conserved glutamate residues to an ion-selectivity site in the L-type Ca2+ channel pore. FEBS Lett. 1993 Dec 6;335(2):265–269. doi: 10.1016/0014-5793(93)80743-e. [DOI] [PubMed] [Google Scholar]
- Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
- Mironov S. L. Conformational model for ion permeation in membrane channels: a comparison with multi-ion models and applications to calcium channel permeability. Biophys J. 1992 Aug;63(2):485–496. doi: 10.1016/S0006-3495(92)81628-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regulla S., Schneider T., Nastainczyk W., Meyer H. E., Hofmann F. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. EMBO J. 1991 Jan;10(1):45–49. doi: 10.1002/j.1460-2075.1991.tb07919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strübing C., Hering S., Glossmann H. Evidence for an external location of the dihydropyridine agonist receptor site on smooth muscle and skeletal muscle calcium channels. Br J Pharmacol. 1993 Apr;108(4):884–891. doi: 10.1111/j.1476-5381.1993.tb13482.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang S., Yatani A., Bahinski A., Mori Y., Schwartz A. Molecular localization of regions in the L-type calcium channel critical for dihydropyridine action. Neuron. 1993 Dec;11(6):1013–1021. doi: 10.1016/0896-6273(93)90215-d. [DOI] [PubMed] [Google Scholar]
- Tetreault S., Ananthanarayanan V. S. Interaction of calcium channel antagonists with calcium: structural studies on verapamil and its Ca2+ complex. J Med Chem. 1993 Apr 16;36(8):1017–1023. doi: 10.1021/jm00060a009. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Ellinor P. T., Horne W. A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci. 1991 Sep;12(9):349–354. doi: 10.1016/0165-6147(91)90595-j. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Hess P., McCleskey E. W., Rosenberg R. L. Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem. 1987;16:265–290. doi: 10.1146/annurev.bb.16.060187.001405. [DOI] [PubMed] [Google Scholar]
- Voitenko S., Purnyn S., Omeltchenko I., Dyadyusha G. G., Zhorov B., Brovtsina N., Skok V. Effect of (+)-sparteine on nicotinic acetylcholine receptors in the neurons of rat superior cervical ganglion. Mol Pharmacol. 1991 Aug;40(2):180–185. [PubMed] [Google Scholar]
- Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]
- Zhorov B. S., Ananthanarayanan V. S. Conformational analysis of free and Ca(2+)-bound forms of verapamil and methoxyverapamil. J Biomol Struct Dyn. 1993 Dec;11(3):529–540. doi: 10.1080/07391102.1993.10508013. [DOI] [PubMed] [Google Scholar]
- Zhorov B. S., Ananthanarayanan V. S. Similarity of Ca(2+)-bound conformations of morphine and Met-enkephalin: a computational study. FEBS Lett. 1994 Nov 7;354(2):131–134. doi: 10.1016/0014-5793(94)01071-4. [DOI] [PubMed] [Google Scholar]
- Zhorov B. S. Comparison of lowest energy conformations of dimethylcurine and methoxyverapamil: evidence of ternary association of calcium channel, Ca2+, and calcium entry blockers. J Membr Biol. 1993 Aug;135(2):119–127. doi: 10.1007/BF00231437. [DOI] [PubMed] [Google Scholar]










