Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Jan;70(1):38–47. doi: 10.1016/S0006-3495(96)79578-4

Spectral analysis of muscle fiber images as a means of assessing sarcomere heterogeneity.

M P Slawnych 1, L Morishita 1, B H Bressler 1
PMCID: PMC1224907  PMID: 8770185

Abstract

A new image-analysis-based method is described for assessing sarcomere heterogeneity in skinned rabbit psoas muscle fiber segments. This method consists of off-line, two-dimensional Fourier spectral analysis of video-taped muscle images. Local sarcomere length is assessed by partitioning the muscle images into half and quarter images spanning the original image and analyzing the associated spectra. The spectra are analyzed in two different ways, yielding two measures of sarcomere length. The first measure is obtained by calculating and inverting the centroid frequency of the first-order peak associated with each two-dimensional Fourier spectrum. The second measure is obtained in a similar manner, the only difference being that the two-dimensional spectra are first collapsed into one-dimensional line spectra by summing the pixels perpendicular to the fiber axis. Comparison of the two measures provides a measure of striation skewness that cannot be obtained by other image analysis based methods that determine sarcomere length by analyzing selected line luminance profiles.

Full text

PDF
38

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anazawa T., Yasuda K., Ishiwata S. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis. Biophys J. 1992 May;61(5):1099–1108. doi: 10.1016/S0006-3495(92)81919-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner B. Sarcomeric domain organization within single skinned rabbit psoas fibers and its effects on laser light diffraction patterns. Biophys J. 1985 Dec;48(6):967–982. doi: 10.1016/S0006-3495(85)83860-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B. Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys J. 1983 Jan;41(1):99–102. doi: 10.1016/S0006-3495(83)84411-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Clerck N. M., Claes V. A., Brutsaert D. L. Uniform sarcomere behaviour during twitch of intact single cardiac cells. J Mol Cell Cardiol. 1984 Aug;16(8):735–745. doi: 10.1016/s0022-2828(84)80657-4. [DOI] [PubMed] [Google Scholar]
  5. De Clerck N. M., Claes V. A., Van Ocken E. R., Brutsaert D. L. Sarcomere distribution patterns in single cardiac cells. Biophys J. 1981 Jul;35(1):237–242. doi: 10.1016/S0006-3495(81)84784-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ford L. E., Nakagawa K., Desper J., Seow C. Y. Effect of osmotic compression on the force-velocity properties of glycerinated rabbit skeletal muscle cells. J Gen Physiol. 1991 Jan;97(1):73–88. doi: 10.1085/jgp.97.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gannier F., Bernengo J. C., Jacquemond V., Garnier D. Measurements of sarcomere dynamics simultaneously with auxotonic force in isolated cardiac cells. IEEE Trans Biomed Eng. 1993 Dec;40(12):1226–1232. doi: 10.1109/10.250578. [DOI] [PubMed] [Google Scholar]
  8. Goldman Y. E., Simmons R. M. A diffraction system for measuring muscle sarcomere length [proceedings]. J Physiol. 1979 Jul;292:5P–6P. [PubMed] [Google Scholar]
  9. Goldman Y. E., Simmons R. M. Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J Physiol. 1984 May;350:497–518. doi: 10.1113/jphysiol.1984.sp015215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldspink G., Larson R. E., Davies R. E. Fluctuations in sarcomere length in the chick anterior and posterior latissimus dorsi muscles during isometric contraction. Experientia. 1970 Jan 15;26(1):16–18. doi: 10.1007/BF01900361. [DOI] [PubMed] [Google Scholar]
  11. HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horowitz A., Wussling H. P., Pollack G. H. Effect of small release on force during sarcomere-isometric tetani in frog muscle fibers. Biophys J. 1992 Jul;63(1):3–17. doi: 10.1016/S0006-3495(92)81596-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Judy M. M., Summerour V., LeConey T., Roa R. L., Templeton G. H. Muscle diffraction theory. Relationship between diffraction subpeaks and discrete sarcomere length distributions. Biophys J. 1982 Feb;37(2):475–487. doi: 10.1016/S0006-3495(82)84694-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Julian F. J., Sollins M. R., Moss R. L. Sarcomere length non-uniformity in relation to tetanic responses of stretched skeletal muscle fibres. Proc R Soc Lond B Biol Sci. 1978 Jan 24;200(1138):109–116. doi: 10.1098/rspb.1978.0009. [DOI] [PubMed] [Google Scholar]
  15. Kawai M., Kuntz I. D. Optical diffraction studies of muscle fibers. Biophys J. 1973 Sep;13(9):857–876. doi: 10.1016/S0006-3495(73)86031-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krueger J. W., Denton A. High resolution measurement of striation patterns and sarcomere motions in cardiac muscle cells. Biophys J. 1992 Jan;61(1):129–144. doi: 10.1016/S0006-3495(92)81822-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krueger J. W., Forletti D., Wittenberg B. A. Uniform sarcomere shortening behavior in isolated cardiac muscle cells. J Gen Physiol. 1980 Nov;76(5):587–607. doi: 10.1085/jgp.76.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leung A. F. Calculation of the laser diffraction intensity of striated muscle by numerical methods. Comput Programs Biomed. 1982 Dec;15(3):169–174. doi: 10.1016/0010-468x(82)90002-2. [DOI] [PubMed] [Google Scholar]
  19. Leung A. F. Fine structures in the light diffraction pattern of striated muscle. J Muscle Res Cell Motil. 1984 Oct;5(5):535–558. doi: 10.1007/BF00713260. [DOI] [PubMed] [Google Scholar]
  20. Lieber R. L., Roos K. P., Lubell B. A., Cline J. W., Baskin R. J. High-speed digital data acquisition of sarcomere length from isolated skeletal and cardiac muscle cells. IEEE Trans Biomed Eng. 1983 Jan;30(1):50–57. doi: 10.1109/tbme.1983.325166. [DOI] [PubMed] [Google Scholar]
  21. Lieber R. L., Yeh Y., Baskin R. J. Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter. Biophys J. 1984 May;45(5):1007–1016. doi: 10.1016/S0006-3495(84)84246-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moisescu D. G., Thieleczek R. Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J Physiol. 1978 Feb;275:241–262. doi: 10.1113/jphysiol.1978.sp012188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morgan D. L. New insights into the behavior of muscle during active lengthening. Biophys J. 1990 Feb;57(2):209–221. doi: 10.1016/S0006-3495(90)82524-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moss R. L., Giulian G. G., Greaser M. L. Effects of EDTA treatment upon the protein subunit composition and mechanical properties of mammalian single skeletal muscle fibers. J Cell Biol. 1983 Apr;96(4):970–978. doi: 10.1083/jcb.96.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moss R. L., Nwoye L. O., Greaser M. L. Substitution of cardiac troponin C into rabbit muscle does not alter the length dependence of Ca2+ sensitivity of tension. J Physiol. 1991;440:273–289. doi: 10.1113/jphysiol.1991.sp018708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Myers J., Tirosh R., Jacobson R. C., Pollack G. H. Phase-locked loop measurement of sarcomere length with high time resolution. IEEE Trans Biomed Eng. 1982 Jun;29(6):463–466. doi: 10.1109/TBME.1982.324975. [DOI] [PubMed] [Google Scholar]
  27. Niggli E. A laser diffraction system with improved sensitivity for long-time measurements of sarcomere dynamics in isolated cardiac myocytes. Pflugers Arch. 1988 Apr;411(4):462–468. doi: 10.1007/BF00587728. [DOI] [PubMed] [Google Scholar]
  28. Periasamy A., Burns D. H., Holdren D. N., Pollack G. H., Trombitás K. A-band shortening in single fibers of frog skeletal muscle. Biophys J. 1990 Apr;57(4):815–828. doi: 10.1016/S0006-3495(90)82601-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roos K. P., Brady A. J. Individual sarcomere length determination from isolated cardiac cells using high-resolution optical microscopy and digital image processing. Biophys J. 1982 Dec;40(3):233–244. doi: 10.1016/S0006-3495(82)84478-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roos K. P., Brady A. J., Tan S. T. Direct measurement of sarcomere length from isolated cardiac cells. Am J Physiol. 1982 Jan;242(1):H68–H78. doi: 10.1152/ajpheart.1982.242.1.H68. [DOI] [PubMed] [Google Scholar]
  31. Roos K. P., Leung A. F. Theoretical Fraunhofer light diffraction patterns calculated from three-dimensional sarcomere arrays imaged from isolated cardiac cells at rest. Biophys J. 1987 Aug;52(2):329–341. doi: 10.1016/S0006-3495(87)83220-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roos K. P. Sarcomere length uniformity determined from three-dimensional reconstructions of resting isolated heart cell striation patterns. Biophys J. 1987 Aug;52(2):317–327. doi: 10.1016/S0006-3495(87)83219-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rüdel R., Zite-Ferenczy F. Do laser diffraction studies on striated muscle indicate stepwise sarcomere shortening? Nature. 1979 Apr 5;278(5704):573–575. doi: 10.1038/278573a0. [DOI] [PubMed] [Google Scholar]
  34. Sidick E., Baskin R. J., Yeh Y., Knoesen A. Rigorous analysis of light diffraction ellipsometry by striated muscle fibers. Biophys J. 1994 Jun;66(6):2051–2061. doi: 10.1016/S0006-3495(94)80999-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sundell C. L., Goldman Y. E., Peachey L. D. Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers. Biophys J. 1986 Feb;49(2):521–530. doi: 10.1016/S0006-3495(86)83662-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thornhill R. A., Thomas N., Berovic N. Optical diffraction by well-ordered muscle fibres. Eur Biophys J. 1991;20(2):87–99. doi: 10.1007/BF00186257. [DOI] [PubMed] [Google Scholar]
  37. Yeh Y., Baskin R. J., Lieber R. L., Roos K. P. Theory of light diffraction by single skeletal muscle fibers. Biophys J. 1980 Mar;29(3):509–522. doi: 10.1016/S0006-3495(80)85149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zite-Ferenczy F., Häberle K. D., Rüdel R., Wilke W. Correlation between the light diffraction pattern and the structure of a muscle fibre realized with Ewald's construction. J Muscle Res Cell Motil. 1986 Jun;7(3):197–214. doi: 10.1007/BF01753553. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES