Abstract
The biotin-binding protein streptavidin was crystallized as two-dimensional periodic arrays on biotinylated phospholipid monolayers. Electron diffraction patterns and images of the arrays embedded in vitreous ice were recorded to near-atomic resolution. Amplitudes and phases of structure factors were computed and combined to produce a 3 A projection density map. The reliability of the map was verified by comparing it to the available x-ray atomic model of the molecule. Projection densities from beta-strands and some amino acid side chains were identified from the electron cryomicroscopy map. These results demonstrate the first near-atomic image of this type of protein periodic array by electron crystallography, which has a great potential to aid in the structural characterization of molecular arrays engineered on a monolayer for various basic or biotechnological applications.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avila-Sakar A. J., Guan T. L., Arad T., Schmid M. F., Loke T. W., Yonath A., Piefke J., Franceschi F., Chiu W. Electron cryomicroscopy of Bacillus stearothermophilus 50 S ribosomal subunits crystallized on phospholipid monolayers. J Mol Biol. 1994 Jun 24;239(5):689–697. doi: 10.1006/jmbi.1994.1406. [DOI] [PubMed] [Google Scholar]
- Blankenburg R., Meller P., Ringsdorf H., Salesse C. Interaction between biotin lipids and streptavidin in monolayers: formation of oriented two-dimensional protein domains induced by surface recognition. Biochemistry. 1989 Oct 3;28(20):8214–8221. doi: 10.1021/bi00446a037. [DOI] [PubMed] [Google Scholar]
- Brink J., Chiu W. Applications of a slow-scan CCD camera in protein electron crystallography. J Struct Biol. 1994 Jul-Aug;113(1):23–34. doi: 10.1006/jsbi.1994.1029. [DOI] [PubMed] [Google Scholar]
- Brink J., Chiu W. Contrast analysis of cryo-images of n-paraffin recorded at 400 kV out to 2.1 A resolution. J Microsc. 1991 Feb;161(Pt 2):279–295. doi: 10.1111/j.1365-2818.1991.tb03090.x. [DOI] [PubMed] [Google Scholar]
- Bullough P. A., Henderson R. Phase accuracy in high-resolution electron microscopy of trigonal and orthorhombic purple membrane. Biophys J. 1990 Sep;58(3):705–711. doi: 10.1016/S0006-3495(90)82413-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu W., Schmid M. F. Electron crystallography of macromolecules. Curr Opin Biotechnol. 1993 Aug;4(4):397–402. doi: 10.1016/0958-1669(93)90004-g. [DOI] [PubMed] [Google Scholar]
- Darst S. A., Ahlers M., Meller P. H., Kubalek E. W., Blankenburg R., Ribi H. O., Ringsdorf H., Kornberg R. D. Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Biophys J. 1991 Feb;59(2):387–396. doi: 10.1016/S0006-3495(91)82232-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeTitta G. T., Edmonds J. W., Stallings W., Donohue J. Molecular structure of biotin. Results of two independent crystal structure investigations. J Am Chem Soc. 1976 Mar 31;98(7):1920–1926. doi: 10.1021/ja00423a045. [DOI] [PubMed] [Google Scholar]
- Fromherz P. Electron microscopic studies of lipid protein films. Nature. 1971 May 28;231(5300):267–268. doi: 10.1038/231267a0. [DOI] [PubMed] [Google Scholar]
- Fukami A., Adachi K. A new method of preparation of a self-perforated micro plastic grid and its application. J Electron Microsc (Tokyo) 1965;14(2):112–118. [PubMed] [Google Scholar]
- Furuno T., Sasabe H. Two-dimensional crystallization of streptavidin by nonspecific binding to a surface film: study with a scanning electron microscope. Biophys J. 1993 Oct;65(4):1714–1717. doi: 10.1016/S0006-3495(93)81225-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garlick R. K., Giese R. W. Avidin binding of radiolabeled biotin derivatives. J Biol Chem. 1988 Jan 5;263(1):210–215. [PubMed] [Google Scholar]
- Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
- Haas H., Brezesinski G., Möhwald H. X-ray diffraction of a protein crystal anchored at the air/water interface. Biophys J. 1995 Jan;68(1):312–314. doi: 10.1016/S0006-3495(95)80189-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayward S. B., Stroud R. M. Projected structure of purple membrane determined to 3.7 A resolution by low temperature electron microscopy. J Mol Biol. 1981 Sep 25;151(3):491–517. doi: 10.1016/0022-2836(81)90007-3. [DOI] [PubMed] [Google Scholar]
- Helm C. A., Knoll W., Israelachvili J. N. Measurement of ligand-receptor interactions. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8169–8173. doi: 10.1073/pnas.88.18.8169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemming S. A., Bochkarev A., Darst S. A., Kornberg R. D., Ala P., Yang D. S., Edwards A. M. The mechanism of protein crystal growth from lipid layers. J Mol Biol. 1995 Feb 17;246(2):308–316. doi: 10.1006/jmbi.1994.0086. [DOI] [PubMed] [Google Scholar]
- Henderson R. Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice. Ultramicroscopy. 1992 Oct;46(1-4):1–18. doi: 10.1016/0304-3991(92)90003-3. [DOI] [PubMed] [Google Scholar]
- Hendrickson W. A., Pähler A., Smith J. L., Satow Y., Merritt E. A., Phizackerley R. P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2190–2194. doi: 10.1073/pnas.86.7.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jap B. K., Zulauf M., Scheybani T., Hefti A., Baumeister W., Aebi U., Engel A. 2D crystallization: from art to science. Ultramicroscopy. 1992 Oct;46(1-4):45–84. doi: 10.1016/0304-3991(92)90007-7. [DOI] [PubMed] [Google Scholar]
- Jeng T. W., Chiu W. Low dose electron microscopy of the crotoxin complex thin crystal. J Mol Biol. 1983 Feb 25;164(2):329–346. doi: 10.1016/0022-2836(83)90080-3. [DOI] [PubMed] [Google Scholar]
- Kubalek E. W., Kornberg R. D., Darst S. A. Improved transfer of two-dimensional crystals from the air/water interface to specimen support grids for high-resolution analysis by electron microscopy. Ultramicroscopy. 1991 Jun;35(3-4):295–304. doi: 10.1016/0304-3991(91)90082-h. [DOI] [PubMed] [Google Scholar]
- Morgan H., Taylor D. M. A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosens Bioelectron. 1992;7(6):405–410. doi: 10.1016/0956-5663(92)85039-d. [DOI] [PubMed] [Google Scholar]
- Müller W., Ringsdorf H., Rump E., Wildburg G., Zhang X., Angermaier L., Knoll W., Liley M., Spinke J. Attempts to mimic docking processes of the immune system: recognition-induced formation of protein multilayers. Science. 1993 Dec 10;262(5140):1706–1708. doi: 10.1126/science.8259513. [DOI] [PubMed] [Google Scholar]
- Schmid M. F., Dargahi R., Tam M. W. SPECTRA: a system for processing electron images of crystals. Ultramicroscopy. 1993 Mar;48(3):251–264. doi: 10.1016/0304-3991(93)90099-j. [DOI] [PubMed] [Google Scholar]
- Unger V. M., Schertler G. F. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J. 1995 May;68(5):1776–1786. doi: 10.1016/S0006-3495(95)80354-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
- Weber P. C., Ohlendorf D. H., Wendoloski J. J., Salemme F. R. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989 Jan 6;243(4887):85–88. doi: 10.1126/science.2911722. [DOI] [PubMed] [Google Scholar]
- Weisenhorn A. L., Schmitt F. J., Knoll W., Hansma P. K. Streptavidin binding observed with an atomic force microscope. Ultramicroscopy. 1992 Jul;42-44(Pt B):1125–1132. doi: 10.1016/0304-3991(92)90413-e. [DOI] [PubMed] [Google Scholar]







