Abstract
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big chloride (BCl) channel and approximately 70 pS for the novel, small chloride (SCl) channel. The protein composition of vesicles indicated that both channels originated from longitudinal SR and terminal cisternae. BCl and SCl channels responded differently to cis SO4(2-) (30-70 mM), 4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid (8-80 microM) and to bilayer potential. The BCl channel open probability was high at all potentials, whereas SCl channels exhibited time-dependent activation and inactivation at negative potentials and deactivation at positive potentials. The duration and frequency of SCl channel openings were minimal at positive potentials and maximal at -40 mV, and were stationary during periods of activity. A substate analysis was performed using the Hidden Markov Model (S. H. Chung, J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage, 1990, Phil. Trans. R. Soc. Lond. B., 329:265-285) and the algorithm EVPROC (evaluated here). SCl channels exhibited transitions between 5 and 7 conductance levels. BCl channels had 7-13 predominant levels plus many more short-lived substates. SCl channels have not been described in previous reports of Cl- channels in skeletal muscle SR.
Full text
PDF



















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahern G. P., Junankar P. R., Dulhunty A. F. Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Lett. 1994 Oct 3;352(3):369–374. doi: 10.1016/0014-5793(94)01001-3. [DOI] [PubMed] [Google Scholar]
- Blatz A. L., Magleby K. L. Single chloride-selective channels active at resting membrane potentials in cultured rat skeletal muscle. Biophys J. 1985 Jan;47(1):119–123. doi: 10.1016/S0006-3495(85)83884-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatz A. L., Magleby K. L. Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle. Biophys J. 1983 Aug;43(2):237–241. doi: 10.1016/S0006-3495(83)84344-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chua M., Betz W. J. Characterization of ion channels on the surface membrane of adult rat skeletal muscle. Biophys J. 1991 Jun;59(6):1251–1260. doi: 10.1016/S0006-3495(91)82340-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung S. H., Moore J. B., Xia L. G., Premkumar L. S., Gage P. W. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. Philos Trans R Soc Lond B Biol Sci. 1990 Sep 29;329(1254):265–285. doi: 10.1098/rstb.1990.0170. [DOI] [PubMed] [Google Scholar]
- Coronado R., Rosenberg R. L., Miller C. Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J Gen Physiol. 1980 Oct;76(4):425–446. doi: 10.1085/jgp.76.4.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dermietzel R., Hwang T. K., Buettner R., Hofer A., Dotzler E., Kremer M., Deutzmann R., Thinnes F. P., Fishman G. I., Spray D. C. Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):499–503. doi: 10.1073/pnas.91.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulhunty A. F., Banyard M. R., Medveczky C. J. Distribution of calcium ATPase in the sarcoplasmic reticulum of fast- and slow-twitch muscles determined with monoclonal antibodies. J Membr Biol. 1987;99(2):79–92. doi: 10.1007/BF01871228. [DOI] [PubMed] [Google Scholar]
- Dulhunty A. F. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J Membr Biol. 1979 Apr 9;45(3-4):293–310. doi: 10.1007/BF01869290. [DOI] [PubMed] [Google Scholar]
- Dulhunty A. F., Junankar P. R., Stanhope C. Extra-junctional ryanodine receptors in the terminal cisternae of mammalian skeletal muscle fibres. Proc Biol Sci. 1992 Jan 22;247(1318):69–75. doi: 10.1098/rspb.1992.0010. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. S., Gage P. W. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J Gen Physiol. 1969 Mar;53(3):279–297. doi: 10.1085/jgp.53.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fink R. H., Stephenson D. G. Ca2+-movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 1987 Aug;409(4-5):374–380. doi: 10.1007/BF00583791. [DOI] [PubMed] [Google Scholar]
- Fox J. A. Ion channel subconductance states. J Membr Biol. 1987;97(1):1–8. doi: 10.1007/BF01869609. [DOI] [PubMed] [Google Scholar]
- Gage P. W., Chung S. H. Influence of membrane potential on conductance sublevels of chloride channels activated by GABA. Proc Biol Sci. 1994 Feb 22;255(1343):167–172. doi: 10.1098/rspb.1994.0024. [DOI] [PubMed] [Google Scholar]
- Gurnett C. A., Kahl S. D., Anderson R. D., Campbell K. P. Absence of the skeletal muscle sarcolemma chloride channel ClC-1 in myotonic mice. J Biol Chem. 1995 Apr 21;270(16):9035–9038. doi: 10.1074/jbc.270.16.9035. [DOI] [PubMed] [Google Scholar]
- Hals G. D., Stein P. G., Palade P. T. Single channel characteristics of a high conductance anion channel in "sarcoballs". J Gen Physiol. 1989 Mar;93(3):385–410. doi: 10.1085/jgp.93.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton S. L., Alvarez R. M., Fill M., Hawkes M. J., Brush K. L., Schilling W. P., Stefani E. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes. Anal Biochem. 1989 Nov 15;183(1):31–41. doi: 10.1016/0003-2697(89)90167-x. [DOI] [PubMed] [Google Scholar]
- Hidaka J., Ide T., Kawasaki T., Taguchi T., Kasai M. Characterization of a Cl(-)-channel from rabbit transverse tubules in the planar lipid bilayer system. Biochem Biophys Res Commun. 1993 Mar 31;191(3):977–982. doi: 10.1006/bbrc.1993.1313. [DOI] [PubMed] [Google Scholar]
- Ide T., Sakamoto H., Morita T., Taguchi T., Kasai M. Purification of a Cl-(-)channel protein of sarcoplasmic reticulum by assaying the channel activity in the planar lipid bilayer system. Biochem Biophys Res Commun. 1991 Apr 15;176(1):38–44. doi: 10.1016/0006-291x(91)90886-c. [DOI] [PubMed] [Google Scholar]
- Ikemoto N., Yano M., el-Hayek R., Antoniu B., Morii M. Chemical depolarization-induced SR calcium release in triads isolated from rabbit skeletal muscle. Biochemistry. 1994 Sep 13;33(36):10961–10968. doi: 10.1021/bi00202a015. [DOI] [PubMed] [Google Scholar]
- Jürgens L., Ilsemann P., Kratzin H. D., Hesse D., Eckart K., Thinnes F. P., Hilschmann N. Studies on human porin. IV. The primary structures of "Porin 31HM" purified from human skeletal muscle membranes and of "Porin 31HL" derived from human B lymphocyte membranes are identical. Biol Chem Hoppe Seyler. 1991 Jul;372(7):455–463. doi: 10.1515/bchm3.1991.372.2.455. [DOI] [PubMed] [Google Scholar]
- Krouse M. E., Schneider G. T., Gage P. W. A large anion-selective channel has seven conductance levels. Nature. 1986 Jan 2;319(6048):58–60. doi: 10.1038/319058a0. [DOI] [PubMed] [Google Scholar]
- Laver D. R. Divalent cation block and competition between divalent and monovalent cations in the large-conductance K+ channel from Chara australis. J Gen Physiol. 1992 Aug;100(2):269–300. doi: 10.1085/jgp.100.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laver D. R., Roden L. D., Ahern G. P., Eager K. R., Junankar P. R., Dulhunty A. F. Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Membr Biol. 1995 Sep;147(1):7–22. doi: 10.1007/BF00235394. [DOI] [PubMed] [Google Scholar]
- Lewis T. M., Dulhunty A. F., Junankar P. R., Stanhope C. Ultrastructure of sarcoballs on the surface of skinned amphibian skeletal muscle fibres. J Muscle Res Cell Motil. 1992 Dec;13(6):640–653. doi: 10.1007/BF01738254. [DOI] [PubMed] [Google Scholar]
- Lewis T. M., Roberts M. L., Bretag A. H. Immunolabelling for VDAC, the mitochondrial voltage-dependent anion channel, on sarcoplasmic reticulum from amphibian skeletal muscle. Neurosci Lett. 1994 Nov 7;181(1-2):83–86. doi: 10.1016/0304-3940(94)90565-7. [DOI] [PubMed] [Google Scholar]
- Miller C., Racker E. Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J Membr Biol. 1976;30(3):283–300. doi: 10.1007/BF01869673. [DOI] [PubMed] [Google Scholar]
- Miller C. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: steady-state electrical properties. J Membr Biol. 1978 Apr 20;40(1):1–23. doi: 10.1007/BF01909736. [DOI] [PubMed] [Google Scholar]
- Mirzabekov T., Ballarin C., Nicolini M., Zatta P., Sorgato M. C. Reconstitution of the native mitochondrial outer membrane in planar bilayers. Comparison with the outer membrane in a patch pipette and effect of aluminum compounds. J Membr Biol. 1993 Apr;133(2):129–143. doi: 10.1007/BF00233794. [DOI] [PubMed] [Google Scholar]
- Mitchell R. D., Palade P., Fleischer S. Purification of morphologically intact triad structures from skeletal muscle. J Cell Biol. 1983 Apr;96(4):1008–1016. doi: 10.1083/jcb.96.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morton M. E., Froehner S. C. Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chem. 1987 Sep 5;262(25):11904–11907. [PubMed] [Google Scholar]
- Palade P. T., Barchi R. L. Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J Gen Physiol. 1977 Mar;69(3):325–342. doi: 10.1085/jgp.69.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puchelle E., Jacquot J., Fuchey C., Burlet H., Klossek J. M., Gilain L., Triglia J. M., Thinnes F. P., Hilschmann N. Studies on human porin. IX. Immunolocalization of porin and CFTR channels in human surface respiratory epithelium. Biol Chem Hoppe Seyler. 1993 May;374(5):297–304. doi: 10.1515/bchm3.1993.374.1-6.297. [DOI] [PubMed] [Google Scholar]
- Pusch M., Steinmeyer K., Jentsch T. J. Low single channel conductance of the major skeletal muscle chloride channel, ClC-1. Biophys J. 1994 Jan;66(1):149–152. doi: 10.1016/S0006-3495(94)80753-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves W. B., Gurich R. W. Calcium-dependent chloride channels in endosomes from rabbit kidney cortex. Am J Physiol. 1994 Mar;266(3 Pt 1):C741–C750. doi: 10.1152/ajpcell.1994.266.3.C741. [DOI] [PubMed] [Google Scholar]
- Rousseau E., Roberson M., Meissner G. Properties of single chloride selective channel from sarcoplasmic reticulum. Eur Biophys J. 1988;16(3):143–151. doi: 10.1007/BF00261900. [DOI] [PubMed] [Google Scholar]
- Rousseau E. Single chloride-selective channel from cardiac sarcoplasmic reticulum studied in planar lipid bilayers. J Membr Biol. 1989 Aug;110(1):39–47. doi: 10.1007/BF01870991. [DOI] [PubMed] [Google Scholar]
- Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schein S. J., Colombini M., Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol. 1976 Dec 28;30(2):99–120. doi: 10.1007/BF01869662. [DOI] [PubMed] [Google Scholar]
- Schmid A., Gögelein H., Kemmer T. P., Schulz I. Anion channels in giant liposomes made of endoplasmic reticulum vesicles from rat exocrine pancreas. J Membr Biol. 1988 Sep;104(3):275–282. doi: 10.1007/BF01872329. [DOI] [PubMed] [Google Scholar]
- Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
- Smith J. S., Coronado R., Meissner G. Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum. Biophys J. 1986 Nov;50(5):921–928. doi: 10.1016/S0006-3495(86)83533-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. V., Gonzalez-Serratos H. G., Shuman H., McClellan G., Somlyo A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981 Sep;90(3):577–594. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sukhareva M., Morrissette J., Coronado R. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle. Biophys J. 1994 Aug;67(2):751–765. doi: 10.1016/S0006-3495(94)80536-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanifuji M., Sokabe M., Kasai M. An anion channel of sarcoplasmic reticulum incorporated into planar lipid bilayers: single-channel behavior and conductance properties. J Membr Biol. 1987;99(2):103–111. doi: 10.1007/BF01871230. [DOI] [PubMed] [Google Scholar]
- Thinnes F. P. Evidence for extra-mitochondrial localization of the VDAC/porin channel in eucaryotic cells. J Bioenerg Biomembr. 1992 Feb;24(1):71–75. doi: 10.1007/BF00769533. [DOI] [PubMed] [Google Scholar]
- Vivaudou M. B., Singer J. J., Walsh J. V., Jr An automated technique for analysis of current transitions in multilevel single-channel recordings. Pflugers Arch. 1986 Oct;407(4):355–364. doi: 10.1007/BF00652618. [DOI] [PubMed] [Google Scholar]
- Wang J., Best P. M. Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane. J Physiol. 1994 Jun 1;477(Pt 2):279–290. doi: 10.1113/jphysiol.1994.sp020190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wischmeyer E., Weber-Schürholz S., Jockusch H. Sarcolemmal chloride and potassium channels from normal and myotonic mouse muscle studied in lipid supplemented vesicles. Biochem Biophys Res Commun. 1995 Aug 15;213(2):513–518. doi: 10.1006/bbrc.1995.2161. [DOI] [PubMed] [Google Scholar]
- Woll K. H., Leibowitz M. D., Neumcke B., Hille B. A high-conductance anion channel in adult amphibian skeletal muscle. Pflugers Arch. 1987 Dec;410(6):632–640. doi: 10.1007/BF00581324. [DOI] [PubMed] [Google Scholar]
- Woll K. H., Neumcke B. Conductance properties and voltage dependence of an anion channel in amphibian skeletal muscle. Pflugers Arch. 1987 Dec;410(6):641–647. doi: 10.1007/BF00581325. [DOI] [PubMed] [Google Scholar]
- Woodbury D. J., Miller C. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys J. 1990 Oct;58(4):833–839. doi: 10.1016/S0006-3495(90)82429-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu X., Hao L., Inesi G. A pK change of acidic residues contributes to cation countertransport in the Ca-ATPase of sarcoplasmic reticulum. Role of H+ in Ca(2+)-ATPase countertransport. J Biol Chem. 1994 Jun 17;269(24):16656–16661. [PubMed] [Google Scholar]