Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Jan;70(1):281–295. doi: 10.1016/S0006-3495(96)79569-3

Action potential conduction between a ventricular cell model and an isolated ventricular cell.

R Wilders 1, R Kumar 1, R W Joyner 1, H J Jongsma 1, E E Verheijck 1, D Golod 1, A C van Ginneken 1, W N Goolsby 1
PMCID: PMC1224926  PMID: 8770204

Abstract

We used the Luo and Rudy (LR) mathematical model of the guinea pig ventricular cell coupled to experimentally recorded guinea pig ventricular cells to investigate the effects of geometrical asymmetry on action potential propagation. The overall correspondence of the LR cell model with the recorded real cell action potentials was quite good, and the strength-duration curves for the real cells and for the LR model cell were in general correspondence. The experimental protocol allowed us to modify the effective size of either the simulation model or the real cell. 1) When we normalized real cell size to LR model cell size, required conductance for propagation between model cell and real cell was greater than that found for conduction between two LR model cells (5.4 nS), with a greater disparity when we stimulated the LR model cell (8.3 +/- 0.6 nS) than when we stimulated the real cell (7.0 +/- 0.2 nS). 2) Electrical loading of the action potential waveform was greater for real cell than for LR model cell even when real cell size was normalized to be equal to that of LR model cell. 3) When the size of the follower cell was doubled, required conductance for propagation was dramatically increased; but this increase was greatest for conduction from real cell to LR model cell, less for conduction from LR model cell to real cell, and least for conduction from LR model cell to LR model cell. The introduction of this "model clamp" technique allows testing of proposed membrane models of cardiac cells in terms of their source-sink behavior under conditions of extreme coupling by examining the symmetry of conduction of a cell pair composed of a model cell and a real cardiac cell. We have focused our experimental work with this technique on situations of extreme uncoupling that can lead to conduction block. In addition, the analysis of the geometrical factors that determine success or failure of conduction is important in the understanding of the process of discontinuous conduction, which occurs in myocardial infarction.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antzelevitch C., Moe G. K. Electrotonic inhibition and summation of impulse conduction in mammalian Purkinje fibers. Am J Physiol. 1983 Jul;245(1):H42–H53. doi: 10.1152/ajpheart.1983.245.1.H42. [DOI] [PubMed] [Google Scholar]
  2. Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De la Fuente D., Sasyniuk B., Moe G. K. Conduction through a narrow isthmus in isolated canine atrial tissue. A model of the W-P-W syndrome. Circulation. 1971 Nov;44(5):803–809. doi: 10.1161/01.cir.44.5.803. [DOI] [PubMed] [Google Scholar]
  4. Fenoglio J. J., Jr, Pham T. D., Harken A. H., Horowitz L. N., Josephson M. E., Wit A. L. Recurrent sustained ventricular tachycardia: structure and ultrastructure of subendocardial regions in which tachycardia originates. Circulation. 1983 Sep;68(3):518–533. doi: 10.1161/01.cir.68.3.518. [DOI] [PubMed] [Google Scholar]
  5. Gardner P. I., Ursell P. C., Fenoglio J. J., Jr, Wit A. L. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation. 1985 Sep;72(3):596–611. doi: 10.1161/01.cir.72.3.596. [DOI] [PubMed] [Google Scholar]
  6. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  7. Joyner R. W., Sugiura H., Tan R. C. Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance. Biophys J. 1991 Nov;60(5):1038–1045. doi: 10.1016/S0006-3495(91)82141-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kienzle M. G., Tan R. C., Ramza B. M., Young M. L., Joyner R. W. Alterations in endocardial activation of the canine papillary muscle early and late after myocardial infarction. Circulation. 1987 Oct;76(4):860–874. doi: 10.1161/01.cir.76.4.860. [DOI] [PubMed] [Google Scholar]
  9. Kohlhardt M., Fleckenstein A. Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol. 1977 Jul;298(3):267–272. doi: 10.1007/BF00500899. [DOI] [PubMed] [Google Scholar]
  10. Kumar R., Joyner R. W. An experimental model of the production of early after depolarizations by injury current from an ischemic region. Pflugers Arch. 1994 Oct;428(5-6):425–432. doi: 10.1007/BF00374561. [DOI] [PubMed] [Google Scholar]
  11. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
  12. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res. 1994 Jun;74(6):1097–1113. doi: 10.1161/01.res.74.6.1097. [DOI] [PubMed] [Google Scholar]
  13. Luo C. H., Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res. 1991 Jun;68(6):1501–1526. doi: 10.1161/01.res.68.6.1501. [DOI] [PubMed] [Google Scholar]
  14. Mendez C., Mueller W. J., Merideth J., Moe G. K. Interaction of transmembrane potentials in canine Purkinje fibers and at Purkinje fiber-muscle junctions. Circ Res. 1969 Mar;24(3):361–372. doi: 10.1161/01.res.24.3.361. [DOI] [PubMed] [Google Scholar]
  15. Spach M. S., Miller W. T., 3rd, Dolber P. C., Kootsey J. M., Sommer J. R., Mosher C. E., Jr The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res. 1982 Feb;50(2):175–191. doi: 10.1161/01.res.50.2.175. [DOI] [PubMed] [Google Scholar]
  16. Spear J. F., Michelson E. L., Moore E. N. Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias. J Am Coll Cardiol. 1983 Apr;1(4):1099–1110. doi: 10.1016/s0735-1097(83)80112-0. [DOI] [PubMed] [Google Scholar]
  17. Sugiura H., Joyner R. W. Action potential conduction between guinea pig ventricular cells can be modulated by calcium current. Am J Physiol. 1992 Nov;263(5 Pt 2):H1591–H1604. doi: 10.1152/ajpheart.1992.263.5.H1591. [DOI] [PubMed] [Google Scholar]
  18. Tan R. C., Joyner R. W. Electrotonic influences on action potentials from isolated ventricular cells. Circ Res. 1990 Nov;67(5):1071–1081. doi: 10.1161/01.res.67.5.1071. [DOI] [PubMed] [Google Scholar]
  19. Tan R. C., Osaka T., Joyner R. W. Experimental model of effects on normal tissue of injury current from ischemic region. Circ Res. 1991 Oct;69(4):965–974. doi: 10.1161/01.res.69.4.965. [DOI] [PubMed] [Google Scholar]
  20. Tan R. C., Ramza B. M., Joyner R. W. Modulation of the Purkinje-ventricular muscle junctional conduction by elevated potassium and hypoxia. Circulation. 1989 May;79(5):1100–1105. doi: 10.1161/01.cir.79.5.1100. [DOI] [PubMed] [Google Scholar]
  21. Ursell P. C., Gardner P. I., Albala A., Fenoglio J. J., Jr, Wit A. L. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res. 1985 Mar;56(3):436–451. doi: 10.1161/01.res.56.3.436. [DOI] [PubMed] [Google Scholar]
  22. Veenstra R. D., Joyner R. W., Rawling D. A. Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the Purkinje-ventricular conduction delay. Circ Res. 1984 May;54(5):500–515. doi: 10.1161/01.res.54.5.500. [DOI] [PubMed] [Google Scholar]
  23. Victorri B., Vinet A., Roberge F. A., Drouhard J. P. Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Comput Biomed Res. 1985 Feb;18(1):10–23. doi: 10.1016/0010-4809(85)90003-5. [DOI] [PubMed] [Google Scholar]
  24. Weingart R., Maurer P. Action potential transfer in cell pairs isolated from adult rat and guinea pig ventricles. Circ Res. 1988 Jul;63(1):72–80. doi: 10.1161/01.res.63.1.72. [DOI] [PubMed] [Google Scholar]
  25. de Bakker J. M., van Capelle F. J., Janse M. J., Tasseron S., Vermeulen J. T., de Jonge N., Lahpor J. R. Slow conduction in the infarcted human heart. 'Zigzag' course of activation. Circulation. 1993 Sep;88(3):915–926. doi: 10.1161/01.cir.88.3.915. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES