Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Jan;70(1):349–357. doi: 10.1016/S0006-3495(96)79576-0

Small-angle x-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory.

R Zhang 1, S Tristram-Nagle 1, W Sun 1, R L Headrick 1, T C Irving 1, R M Suter 1, J F Nagle 1
PMCID: PMC1224933  PMID: 8770211

Abstract

X-ray scattering data at high instrumental resolution are reported for multilamellar vesicles of L alpha phase lipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine at 50 degrees C under varying osmotic pressure. The data are fitted to two theories that account for noncrystalline disorder, paracrystalline theory (PT) and modified Caillé theory (MCT). The MCT provides good fits to the data, much better than the PT fits. The particularly important characteristic of MCT is the long power law tails in the scattering. PT fits (as well as ordinary integration with no attempt to account for the noncrystalline disorder) increasingly underestimate this scattering intensity as the order h increases, thereby underestimating the form factors used to obtain electron density profiles.

Full text

PDF
349

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaurock A. E., Nelander J. C. Disorder in nerve myelin: analysis of the diffuse x-ray scattering. J Mol Biol. 1976 May 15;103(2):421–431. doi: 10.1016/0022-2836(76)90321-1. [DOI] [PubMed] [Google Scholar]
  2. Franks N. P., Lieb W. R. The structure of lipid bilayers and the effects of general anaesthetics. An x-ray and neutron diffraction study. J Mol Biol. 1979 Oct 9;133(4):469–500. doi: 10.1016/0022-2836(79)90403-0. [DOI] [PubMed] [Google Scholar]
  3. Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
  4. Kim J. T., Mattai J., Shipley G. G. Bilayer interactions of ether- and ester-linked phospholipids: dihexadecyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1987 Oct 20;26(21):6599–6603. doi: 10.1021/bi00395a006. [DOI] [PubMed] [Google Scholar]
  5. McIntosh T. J., Simon S. A. Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry. 1986 Aug 26;25(17):4948–4952. doi: 10.1021/bi00365a034. [DOI] [PubMed] [Google Scholar]
  6. McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
  7. Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schwartz S., Cain J. E., Dratz E. A., Blasie J. K. An analysis of lamellar x-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys J. 1975 Dec;15(12):1201–1233. doi: 10.1016/S0006-3495(75)85895-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thurmond R. L., Dodd S. W., Brown M. F. Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines. Biophys J. 1991 Jan;59(1):108–113. doi: 10.1016/S0006-3495(91)82203-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Torbet J., Wilkins M. H. X-ray diffraction studies of lecithin bilayers. J Theor Biol. 1976 Oct 21;62(2):447–458. doi: 10.1016/0022-5193(76)90129-6. [DOI] [PubMed] [Google Scholar]
  11. Tristram-Nagle S., Zhang R., Suter R. M., Worthington C. R., Sun W. J., Nagle J. F. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys J. 1993 Apr;64(4):1097–1109. doi: 10.1016/S0006-3495(93)81475-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wiener M. C., Suter R. M., Nagle J. F. Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J. 1989 Feb;55(2):315–325. doi: 10.1016/S0006-3495(89)82807-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wiener M. C., White S. H. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution. Biophys J. 1991 Jan;59(1):162–173. doi: 10.1016/S0006-3495(91)82208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Worthington C. R., Elliott G. F. Helical diffraction. I. The paracrystalline helix and disorder analysis. Acta Crystallogr A. 1989 Sep 1;45(Pt 9):645–654. doi: 10.1107/s0108767389005283. [DOI] [PubMed] [Google Scholar]
  15. Worthington C. R., Kharf R. S. Structure determination of lipid bilayers. Biophys J. 1978 Sep;23(3):407–425. doi: 10.1016/S0006-3495(78)85459-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zhang R, Sun W, Tristram-Nagle S, Headrick RL, Suter RM, Nagle aJ. Critical Fluctuations in Membranes. Phys Rev Lett. 1995 Apr 3;74(14):2832–2835. doi: 10.1103/PhysRevLett.74.2832. [DOI] [PubMed] [Google Scholar]
  17. Zhang R, Suter RM, Nagle JF. Theory of the structure factor of lipid bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Dec;50(6):5047–5060. doi: 10.1103/physreve.50.5047. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES