Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Jan;70(1):482–488. doi: 10.1016/S0006-3495(96)79593-0

Structural determinants of fluoride and formate binding to hemoglobin and myoglobin: crystallographic and 1H-NMR relaxometric study.

S Aime 1, M Fasano 1, S Paoletti 1, F Cutruzzolà 1, A Desideri 1, M Bolognesi 1, M Rizzi 1, P Ascenzi 1
PMCID: PMC1224947  PMID: 8770225

Abstract

The x-ray crystal structure of the fluoride derivative of ferric sperm whale (Physeter catodon) myoglobin (Mb) has been determined at 2.5 A resolution (R = 0.187) by difference Fourier techniques. The fluoride anion, sitting in the central part of the heme distal site and coordinated to the heme iron, is hydrogen bonded to the distal His(64)E7 NE2 atom and to the W195 solvent water molecule. This water molecule also significantly interacts with the same HisE7 residue, which stabilizes the coordinated fluoride ion. Moreover, fluoride and formate binding to ferric Aplysia limacina Mb, sperm whale (Physeter catodon) Mb, horse (Caballus caballus) Mb, loggerhead sea turtle (Caretta caretta) Mb, and human hemoglobin has been investigated by 1H-NMR relaxometry. A strong solvent proton relaxation enhancement is observed for the fluoride derivatives of hemoproteins containing HisE7. Conversely, only a small outer-sphere contribution to the solvent relaxation rate has been observed for all of the formate derivatives considered and for the A. limacina Mb:fluoride derivative, where HisE7 is replaced by Val.

Full text

PDF
482

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aime S., Fasano M., Paoletti S., Arnelli A., Ascenzi P. NMR relaxometric investigation on human methemoglobin and fluoromethemoglobin. An improved quantitative in vitro assay of human methemoglobin. Magn Reson Med. 1995 Jun;33(6):827–831. doi: 10.1002/mrm.1910330613. [DOI] [PubMed] [Google Scholar]
  2. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. Conformational relaxation and ligand binding in myoglobin. Biochemistry. 1994 May 3;33(17):5128–5145. doi: 10.1021/bi00183a017. [DOI] [PubMed] [Google Scholar]
  3. Bashford D., Chothia C., Lesk A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol. 1987 Jul 5;196(1):199–216. doi: 10.1016/0022-2836(87)90521-3. [DOI] [PubMed] [Google Scholar]
  4. Bolognesi M., Coda A., Frigerio F., Gatti G., Ascenzi P., Brunori M. X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin at 2.0 A resolution. Stabilization of the fluoride ion by hydrogen bonding to Arg66 (E10). J Mol Biol. 1990 Jun 20;213(4):621–625. doi: 10.1016/S0022-2836(05)80249-9. [DOI] [PubMed] [Google Scholar]
  5. Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Smerdon S. J., Wilkinson A. J., Dou Y., Keenan D., Ikeda-Saito M., Brantley R. E., Jr Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem. 1994 May 13;269(19):13843–13853. [PubMed] [Google Scholar]
  6. Conti E., Moser C., Rizzi M., Mattevi A., Lionetti C., Coda A., Ascenzi P., Brunori M., Bolognesi M. X-ray crystal structure of ferric Aplysia limacina myoglobin in different liganded states. J Mol Biol. 1993 Oct 5;233(3):498–508. doi: 10.1006/jmbi.1993.1527. [DOI] [PubMed] [Google Scholar]
  7. Deatherage J. F., Loe R. S., Moffat K. Structure of fluoride methemoglobin. J Mol Biol. 1976 Jul 5;104(3):723–728. doi: 10.1016/0022-2836(76)90131-5. [DOI] [PubMed] [Google Scholar]
  8. Fabry M. E., Eisenstadt M. The mechanism of water proton nuclear magnetic resonance relaxation in the presence of mammalian and Aplysia metmyoglobin fluoride. J Biol Chem. 1974 May 10;249(9):2915–2919. [PubMed] [Google Scholar]
  9. Fermi G., Perutz M. F. Structure of human fluoromethaemoglobin with inositol hexaphosphate. J Mol Biol. 1977 Aug 15;114(3):421–431. doi: 10.1016/0022-2836(77)90259-5. [DOI] [PubMed] [Google Scholar]
  10. Giacometti G. M., Ascenzi P., Brunori M., Rigatti G., Giacometti G., Bolognesi M. Absence of water at the sixth co-ordination site in ferric Aplysia myoglobin. J Mol Biol. 1981 Sep 15;151(2):315–319. doi: 10.1016/0022-2836(81)90518-0. [DOI] [PubMed] [Google Scholar]
  11. Gupta R. K., Mildvan A. S. Nuclear relaxation studies on human methemoglobin. Observation of cooperativity and alkaline Bohr effect with inositol hexaphosphate. J Biol Chem. 1975 Jan 10;250(1):246–253. [PubMed] [Google Scholar]
  12. Koenig S. H., Brown R. D., 3rd, Lindstrom T. R. Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin. Biophys J. 1981 Jun;34(3):397–408. doi: 10.1016/S0006-3495(81)84858-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leci E., Brancaccio A., Cutruzzolà F., Allocatelli C. T., Tarricone C., Bolognesi M., Desideri A., Ascenzi P. Formate binding to ferric wild type and mutant myoglobins thermodynamic and X-ray crystallographic study. FEBS Lett. 1995 Jan 9;357(3):227–229. doi: 10.1016/0014-5793(94)01324-t. [DOI] [PubMed] [Google Scholar]
  14. Nardini M., Tarricone C., Rizzi M., Lania A., Desideri A., De Sanctis G., Coletta M., Petruzzelli R., Ascenzi P., Coda A. Reptile heme protein structure: X-ray crystallographic study of the aquo-met and cyano-met derivatives of the loggerhead sea turtle (Caretta caretta) myoglobin at 2.0 A resolution. J Mol Biol. 1995 Mar 31;247(3):459–465. doi: 10.1006/jmbi.1994.0153. [DOI] [PubMed] [Google Scholar]
  15. Perutz M. F. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol. 1990;52:1–25. doi: 10.1146/annurev.ph.52.030190.000245. [DOI] [PubMed] [Google Scholar]
  16. Perutz M. F. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem Sci. 1989 Feb;14(2):42–44. doi: 10.1016/0968-0004(89)90039-x. [DOI] [PubMed] [Google Scholar]
  17. Perutz M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem. 1979;48:327–386. doi: 10.1146/annurev.bi.48.070179.001551. [DOI] [PubMed] [Google Scholar]
  18. Smerdon S. J., Krzywda S., Brzozowski A. M., Davies G. J., Wilkinson A. J., Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Li T. Interactions among residues CD3, E7, E10, and E11 in myoglobins: attempts to simulate the ligand-binding properties of Aplysia myoglobin. Biochemistry. 1995 Jul 11;34(27):8715–8725. doi: 10.1021/bi00027a022. [DOI] [PubMed] [Google Scholar]
  19. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
  20. Vuk-Pavlović S., Bracika V., Benko B., Maricić S. A proton magnetic relaxation study of ferric myoglobin and haemoglobin in water/ethanediol solutions. Biochim Biophys Acta. 1977 Apr 25;491(2):447–456. doi: 10.1016/0005-2795(77)90287-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES