Abstract
Transmembrane osmotic gradients applied on large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles were used to modulate the potency of melittin to induce leakage. Melittin, an amphipathic peptide, changes the permeability of vesicles, as studied using the release of entrapped calcein, a fluorescent marker. A promotion of the ability of melittin to induce leakage was observed when a hyposomotic gradient (i.e., internal salt concentration higher than the external one) was imposed on the vesicles. It is proposed that structural perturbations caused by the osmotic pressure loosen the compactness of the outer leaflet, which facilitates the melittin-induced change in membrane permeability. Additionally, we have shown that this phenomenon is not due to enhanced binding of melittin to the vesicles using intrinsic fluorescence of the melittin tryptophan. Furthermore, we investigated the possibility of using a transmembrane pH gradient to control the lytic activity of melittin. The potency of melittin in inducing release is known to be inhibited by increased negative surface charge density. A transmembrane pH gradient causing an asymmetric distribution of unprotonated palmitic acid in the bilayer is shown to be an efficient way to modulate the lytic activity of melittin, without changing the overall lipid composition of the membrane. We demonstrate that the protective effect of negatively charged lipids is preserved for asymmetric membranes.
Full text
PDF![831](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/c1017087dbbd/biophysj00053-0255.png)
![832](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/0fe39861c67e/biophysj00053-0256.png)
![833](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/631162707a20/biophysj00053-0257.png)
![834](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/d9242010d4db/biophysj00053-0258.png)
![835](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/7a4993f25c13/biophysj00053-0259.png)
![836](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/f0a884a55b14/biophysj00053-0260.png)
![837](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/e717df59b72c/biophysj00053-0261.png)
![838](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/95a7a22c0554/biophysj00053-0262.png)
![839](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/6e44696b0c4e/biophysj00053-0263.png)
![840](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/1224983/5b2e84ed4c52/biophysj00053-0264.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akabas M. H., Cohen F. S., Finkelstein A. Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J Cell Biol. 1984 Mar;98(3):1063–1071. doi: 10.1083/jcb.98.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashford C. L., Alder G. M., Menestrina G., Micklem K. J., Murphy J. J., Pasternak C. A. Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents. A common mechanism blocked by divalent cations. J Biol Chem. 1986 Jul 15;261(20):9300–9308. [PubMed] [Google Scholar]
- Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
- Borochov A., Borochov H. Increase in membrane fluidity in liposomes and plant protoplasts upon osmotic swelling. Biochim Biophys Acta. 1979 Feb 2;550(3):546–549. doi: 10.1016/0005-2736(79)90156-1. [DOI] [PubMed] [Google Scholar]
- Boroske E., Elwenspoek M., Helfrich W. Osmotic shrinkage of giant egg-lecithin vesicles. Biophys J. 1981 Apr;34(1):95–109. doi: 10.1016/S0006-3495(81)84839-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullis P. R., Bally M. B., Madden T. D., Mayer L. D., Hope M. J. pH gradients and membrane transport in liposomal systems. Trends Biotechnol. 1991 Aug;9(8):268–272. doi: 10.1016/0167-7799(91)90088-y. [DOI] [PubMed] [Google Scholar]
- Curtain C. C., Looney F. D., Regan D. L., Ivancic N. M. Changes in the ordering of lipids in the membrane of Dunaliella in response to osmotic-pressure changes. An e.s.r. study. Biochem J. 1983 Jul 1;213(1):131–136. doi: 10.1042/bj2130131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson C. R., Drake A. F., Helliwell J., Hider R. C. The interaction of bee melittin with lipid bilayer membranes. Biochim Biophys Acta. 1978 Jun 16;510(1):75–86. doi: 10.1016/0005-2736(78)90131-1. [DOI] [PubMed] [Google Scholar]
- DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drake A. F., Hider R. C. The structure of melittin in lipid bilayer membranes. Biochim Biophys Acta. 1979 Aug 7;555(2):371–373. doi: 10.1016/0005-2736(79)90178-0. [DOI] [PubMed] [Google Scholar]
- Dufourcq J., Faucon J. F., Fourche G., Dasseux J. L., Le Maire M., Gulik-Krzywicki T. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim Biophys Acta. 1986 Jul 10;859(1):33–48. doi: 10.1016/0005-2736(86)90315-9. [DOI] [PubMed] [Google Scholar]
- Dufourcq J., Faucon J. F. Intrinsic fluorescence study of lipid-protein interactions in membrane models. Binding of melittin, an amphipathic peptide, to phospholipid vesicles. Biochim Biophys Acta. 1977 May 16;467(1):1–11. doi: 10.1016/0005-2736(77)90236-x. [DOI] [PubMed] [Google Scholar]
- Döbereiner H. G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys J. 1993 Oct;65(4):1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einspahr K. J., Maeda M., Thompson G. A., Jr Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock. J Cell Biol. 1988 Aug;107(2):529–538. doi: 10.1083/jcb.107.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ertel A., Marangoni A. G., Marsh J., Hallett F. R., Wood J. M. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):426–434. doi: 10.1016/S0006-3495(93)81383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farge E., Devaux P. F. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J. 1992 Feb;61(2):347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallett F. R., Marsh J., Nickel B. G., Wood J. M. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):435–442. doi: 10.1016/S0006-3495(93)81384-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hantz E., Cao A., Escaig J., Taillandier E. The osmotic response of large unilamellar vesicles studied by quasielastic light scattering. Biochim Biophys Acta. 1986 Nov 17;862(2):379–386. doi: 10.1016/0005-2736(86)90241-5. [DOI] [PubMed] [Google Scholar]
- Hope M. J., Cullis P. R. Lipid asymmetry induced by transmembrane pH gradients in large unilamellar vesicles. J Biol Chem. 1987 Mar 25;262(9):4360–4366. [PubMed] [Google Scholar]
- Hope M. J., Redelmeier T. E., Wong K. F., Rodrigueza W., Cullis P. R. Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Biochemistry. 1989 May 16;28(10):4181–4187. doi: 10.1021/bi00436a009. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lang F. Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim Biophys Acta. 1991 Dec 12;1071(4):331–350. doi: 10.1016/0304-4157(91)90001-d. [DOI] [PubMed] [Google Scholar]
- Inoue T., Kamaya H., Ueda I. Stopped-flow study of anesthetic effect on water-transport kinetics through phospholipid membranes. Interfacial versus lipid core ligands. Biochim Biophys Acta. 1985 Jan 25;812(2):393–401. doi: 10.1016/0005-2736(85)90314-1. [DOI] [PubMed] [Google Scholar]
- Kamp F., Hamilton J. A. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11367–11370. doi: 10.1073/pnas.89.23.11367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katsu T., Ninomiya C., Kuroko M., Kobayashi H., Hirota T., Fujita Y. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. Biochim Biophys Acta. 1988 Mar 22;939(1):57–63. doi: 10.1016/0005-2736(88)90047-8. [DOI] [PubMed] [Google Scholar]
- Lafleur M., Dasseux J. L., Pigeon M., Dufourcq J., Pézolet M. Study of the effect of melittin on the thermotropism of dipalmitoylphosphatidylcholine by Raman spectroscopy. Biochemistry. 1987 Feb 24;26(4):1173–1179. doi: 10.1021/bi00378a027. [DOI] [PubMed] [Google Scholar]
- Laine R. O., Morgan B. P., Esser A. F. Comparison between complement and melittin hemolysis: anti-melittin antibodies inhibit complement lysis. Biochemistry. 1988 Jul 12;27(14):5308–5314. doi: 10.1021/bi00414a054. [DOI] [PubMed] [Google Scholar]
- Lauterwein J., Bösch C., Brown L. R., Wüthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta. 1979 Sep 21;556(2):244–264. doi: 10.1016/0005-2736(79)90046-4. [DOI] [PubMed] [Google Scholar]
- Lavialle F., Adams R. G., Levin I. W. Infrared spectroscopic study of the secondary structure of melittin in water, 2-chloroethanol, and phospholipid bilayer dispersions. Biochemistry. 1982 May 11;21(10):2305–2312. doi: 10.1021/bi00539a006. [DOI] [PubMed] [Google Scholar]
- Lehtonen J. Y., Kinnunen P. K. Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs. Biophys J. 1994 Jun;66(6):1981–1990. doi: 10.1016/S0006-3495(94)80991-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerebours B., Wehrli E., Hauser H. Thermodynamic stability and osmotic sensitivity of small unilamellar phosphatidylcholine vesicles. Biochim Biophys Acta. 1993 Oct 10;1152(1):49–60. doi: 10.1016/0005-2736(93)90230-w. [DOI] [PubMed] [Google Scholar]
- Lucy J. A., Ahkong Q. F. An osmotic model for the fusion of biological membranes. FEBS Lett. 1986 Apr 7;199(1):1–11. doi: 10.1016/0014-5793(86)81213-3. [DOI] [PubMed] [Google Scholar]
- Maeda M., Thompson G. A., Jr On the mechanism of rapid plasma membrane and chloroplast envelope expansion in Dunaliella salina exposed to hypoosmotic shock. J Cell Biol. 1986 Jan;102(1):289–297. doi: 10.1083/jcb.102.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathai J. C., Sauna Z. E., John O., Sitaramam V. Rate-limiting step in electron transport. Osmotically sensitive diffusion of quinones through voids in the bilayer. J Biol Chem. 1993 Jul 25;268(21):15442–15454. [PubMed] [Google Scholar]
- Miller M. A., Cloyd M. W., Liebmann J., Rinaldo C. R., Jr, Islam K. R., Wang S. Z., Mietzner T. A., Montelaro R. C. Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology. 1993 Sep;196(1):89–100. doi: 10.1006/viro.1993.1457. [DOI] [PubMed] [Google Scholar]
- Mimms L. T., Zampighi G., Nozaki Y., Tanford C., Reynolds J. A. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry. 1981 Feb 17;20(4):833–840. doi: 10.1021/bi00507a028. [DOI] [PubMed] [Google Scholar]
- Monette M., Lafleur M. Modulation of melittin-induced lysis by surface charge density of membranes. Biophys J. 1995 Jan;68(1):187–195. doi: 10.1016/S0006-3495(95)80174-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monette M., Van Calsteren M. R., Lafleur M. Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study. Biochim Biophys Acta. 1993 Jul 4;1149(2):319–328. doi: 10.1016/0005-2736(93)90217-n. [DOI] [PubMed] [Google Scholar]
- Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
- Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., Nunn R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990 Oct;58(4):997–1009. doi: 10.1016/S0006-3495(90)82444-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohki S., Marcus E., Sukumaran D. K., Arnold K. Interaction of melittin with lipid membranes. Biochim Biophys Acta. 1994 Sep 14;1194(2):223–232. doi: 10.1016/0005-2736(94)90303-4. [DOI] [PubMed] [Google Scholar]
- Portlock S. H., Clague M. J., Cherry R. J. Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochim Biophys Acta. 1990 Nov 30;1030(1):1–10. doi: 10.1016/0005-2736(90)90231-c. [DOI] [PubMed] [Google Scholar]
- Pott T., Dufourc E. J. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study. Biophys J. 1995 Mar;68(3):965–977. doi: 10.1016/S0006-3495(95)80272-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quay S. C., Condie C. C. Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction. Biochemistry. 1983 Feb 1;22(3):695–700. doi: 10.1021/bi00272a026. [DOI] [PubMed] [Google Scholar]
- Rutkowski C. A., Williams L. M., Haines T. H., Cummins H. Z. The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy. Biochemistry. 1991 Jun 11;30(23):5688–5696. doi: 10.1021/bi00237a008. [DOI] [PubMed] [Google Scholar]
- Schullery S. E., Seder T. A., Weinstein D. A., Bryant D. A. Differential thermal analysis of dipalmitoylphosphatidylcholine--fatty acid mixtures. Biochemistry. 1981 Nov 24;20(24):6818–6824. doi: 10.1021/bi00527a012. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Zong R. T., Popescu T. Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta. 1992 Sep 21;1110(1):97–104. doi: 10.1016/0005-2736(92)90299-2. [DOI] [PubMed] [Google Scholar]
- Surewicz W. K. Effect of osmotic gradient on the physical properties of membrane lipids in liposomes. Chem Phys Lipids. 1983 Jul;33(1):81–85. doi: 10.1016/0009-3084(83)90010-5. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Noji S., Erbe E. F., Steere R. L., Kon H. Cold shock hemolysis in human erythrocytes studied by spin probe method and freeze-fracture electron microscopy. Biophys J. 1986 Feb;49(2):403–410. doi: 10.1016/S0006-3495(86)83650-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tosteson M. T., Holmes S. J., Razin M., Tosteson D. C. Melittin lysis of red cells. J Membr Biol. 1985;87(1):35–44. doi: 10.1007/BF01870697. [DOI] [PubMed] [Google Scholar]
- Wilschut J., Scholma J., Eastman S. J., Hope M. J., Cullis P. R. Ca(2+)-induced fusion of phospholipid vesicles containing free fatty acids: modulation by transmembrane pH gradients. Biochemistry. 1992 Mar 17;31(10):2629–2636. doi: 10.1021/bi00125a001. [DOI] [PubMed] [Google Scholar]
- Woodbury D. J., Hall J. E. Role of channels in the fusion of vesicles with a planar bilayer. Biophys J. 1988 Dec;54(6):1053–1063. doi: 10.1016/S0006-3495(88)83042-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yianni Y. P., Fitton J. E., Morgan C. G. Lytic effects of melittin and delta-haemolysin from Staphylococcus aureus on vesicles of dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1986 Mar 27;856(1):91–100. doi: 10.1016/0005-2736(86)90014-3. [DOI] [PubMed] [Google Scholar]
- de Kruijff B., Cullis P. R., Radda G. K. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes. Biochim Biophys Acta. 1975 Sep 16;406(1):6–20. doi: 10.1016/0005-2736(75)90038-3. [DOI] [PubMed] [Google Scholar]