Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Feb;70(2):948–961. doi: 10.1016/S0006-3495(96)79638-8

Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin.

F Boucher 1, S G Taneva 1, S Elouatik 1, M Déry 1, S Messaoudi 1, E Harvey-Girard 1, N Beaudoin 1
PMCID: PMC1224995  PMID: 8789112

Abstract

In purple membrane added with general anesthetics, there exists an acid-base equilibrium between two spectral forms of the pigment: bR570 and bR480 (apparent pKa = 7.3). As the purple 570 nm bacteriorhodopsin is reversibly transformed into its red 480 nm form, the proton pumping capability of the pigment reversibly decreases, as indicated by transient proton release measurements and proton translocation action spectra of mixture of both spectral forms. It happens in spite of a complete photochemical activity in bR480 that is mostly characterized by fast deprotonation and slow reprotonation steps and which, under continuous illumination, bleaches with a yield comparable to that of bR570. This modified photochemical activity has a correlated specific photoelectrical counterpart: a faster proton extrusion current and a slower reprotonation current. The relative areas of all photocurrent phases are reduced in bR480, most likely because its photochemistry is accompanied by charge movements for shorter distances than in the native pigment, reflecting a reversible inhibition of the pumping activity.

Full text

PDF
948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexiev U., Mollaaghababa R., Scherrer P., Khorana H. G., Heyn M. P. Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):372–376. doi: 10.1073/pnas.92.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baber J., Ellena J. F., Cafiso D. S. Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy. Biochemistry. 1995 May 16;34(19):6533–6539. doi: 10.1021/bi00019a035. [DOI] [PubMed] [Google Scholar]
  3. Balashov S. P., Govindjee R., Kono M., Imasheva E., Lukashev E., Ebrey T. G., Crouch R. K., Menick D. R., Feng Y. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Biochemistry. 1993 Oct 5;32(39):10331–10343. doi: 10.1021/bi00090a008. [DOI] [PubMed] [Google Scholar]
  4. Brouillette C. G., Muccio D. D., Finney T. K. pH dependence of bacteriorhodopsin thermal unfolding. Biochemistry. 1987 Nov 17;26(23):7431–7438. doi: 10.1021/bi00397a035. [DOI] [PubMed] [Google Scholar]
  5. Butt H. J., Fendler K., Bamberg E., Tittor J., Oesterhelt D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 1989 Jun;8(6):1657–1663. doi: 10.1002/j.1460-2075.1989.tb03556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dér A., Hargittai P., Simon J. Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. J Biochem Biophys Methods. 1985 Mar;10(5-6):295–300. doi: 10.1016/0165-022x(85)90063-6. [DOI] [PubMed] [Google Scholar]
  7. Govindjec R., Kono M., Balashov S. P., Imasheva E., Sheves M., Ebrey T. G. Effects of substitution of tyrosine 57 with asparagine and phenylalanine on the properties of bacteriorhodopsin. Biochemistry. 1995 Apr 11;34(14):4828–4838. doi: 10.1021/bi00014a040. [DOI] [PubMed] [Google Scholar]
  8. Heberle J., Oesterhelt D., Dencher N. A. Decoupling of photo- and proton cycle in the Asp85-->Glu mutant of bacteriorhodopsin. EMBO J. 1993 Oct;12(10):3721–3727. doi: 10.1002/j.1460-2075.1993.tb06049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 1994 Aug 4;370(6488):379–382. doi: 10.1038/370379a0. [DOI] [PubMed] [Google Scholar]
  10. Huang K. S., Bayley H., Khorana H. G. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc Natl Acad Sci U S A. 1980 Jan;77(1):323–327. doi: 10.1073/pnas.77.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hwang S. B., Stoeckenius W. Purple membrane vesicles: morphology and proton translocation. J Membr Biol. 1977 May 12;33(3-4):325–350. doi: 10.1007/BF01869523. [DOI] [PubMed] [Google Scholar]
  12. Kataoka M., Kahn T. W., Tsujiuchi Y., Engelman D. M., Tokunaga F. Bacteriorhodopsin reconstituted from two individual helices and the complementary five-helix fragment is photoactive. Photochem Photobiol. 1992 Dec;56(6):895–901. doi: 10.1111/j.1751-1097.1992.tb09710.x. [DOI] [PubMed] [Google Scholar]
  13. Keszthelyi L., Ormos P. Displacement current on purple membrane fragments oriented in a suspension. Biophys Chem. 1983 Nov;18(4):397–405. doi: 10.1016/0301-4622(83)80053-2. [DOI] [PubMed] [Google Scholar]
  14. Kono M., Misra S., Ebrey T. G. pH dependence of light-induced proton release by bacteriorhodopsin. FEBS Lett. 1993 Sep 27;331(1-2):31–34. doi: 10.1016/0014-5793(93)80291-2. [DOI] [PubMed] [Google Scholar]
  15. Lee K. H., McIntosh A. R., Boucher F. The interaction between halogenated anaesthetics and bacteriorhodopsin in purple membranes as examined by intrinsic ultraviolet fluorescence. Biochem Cell Biol. 1991 Feb-Mar;69(2-3):178–184. doi: 10.1139/o91-026. [DOI] [PubMed] [Google Scholar]
  16. Liu S. Y., Govindjee R., Ebrey T. G. Light-induced currents from oriented purple membrane: II. Proton and cation contributions to the photocurrent. Biophys J. 1990 May;57(5):951–963. doi: 10.1016/S0006-3495(90)82615-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu S. Y., Kono M., Ebrey T. G. Effect of pH buffer molecules on the light-induced currents from oriented purple membrane. Biophys J. 1991 Jul;60(1):204–216. doi: 10.1016/S0006-3495(91)82044-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu S. Y. Light-induced currents from oriented purple membrane: I. Correlation of the microsecond component (B2) with the L-M photocycle transition. Biophys J. 1990 May;57(5):943–950. doi: 10.1016/S0006-3495(90)82614-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lozier R. H., Niederberger W., Bogomolni R. A., Hwang S., Stoeckenius W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim Biophys Acta. 1976 Sep 13;440(3):545–556. doi: 10.1016/0005-2728(76)90041-4. [DOI] [PubMed] [Google Scholar]
  20. Marinetti T. Abrupt onset of large scale nonproton ion release in purple membranes caused by increasing pH or ionic strength. Biophys J. 1987 Jun;51(6):875–881. doi: 10.1016/S0006-3495(87)83415-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marinetti T., Mauzerall D. Absolute quantum yields and proof of proton and nonproton transient release and uptake in photoexcited bacteriorhodopsin. Proc Natl Acad Sci U S A. 1983 Jan;80(1):178–180. doi: 10.1073/pnas.80.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
  23. Nakagawa T., Hamanaka T., Nishimura S., Uruga T., Kito Y. The specific binding site of the volatile anesthetic diiodomethane to purple membrane by X-ray diffraction. J Mol Biol. 1994 May 6;238(3):297–301. doi: 10.1006/jmbi.1994.1292. [DOI] [PubMed] [Google Scholar]
  24. Nishimura S., Mashimo T., Hiraki K., Hamanaka T., Kito Y., Yoshiya I. Volatile anesthetics cause conformational changes of bacteriorhodopsin in purple membrane. Biochim Biophys Acta. 1985 Sep 10;818(3):421–424. doi: 10.1016/0005-2736(85)90018-5. [DOI] [PubMed] [Google Scholar]
  25. Pande C., Callender R., Baribeau J., Boucher F., Pande A. Effect of lipid-protein interaction on the color of bacteriorhodopsin. Biochim Biophys Acta. 1989 Feb 28;973(2):257–262. doi: 10.1016/s0005-2728(89)80430-x. [DOI] [PubMed] [Google Scholar]
  26. Pomerleau V., Harvey-Girard E., Boucher F. Lipid-protein interactions in the purple membrane: structural specificity within the hydrophobic domain. Biochim Biophys Acta. 1995 Mar 22;1234(2):221–224. doi: 10.1016/0005-2736(94)00296-2. [DOI] [PubMed] [Google Scholar]
  27. Racker E. A new procedure for the reconstitution of biologically active phospholipid vesicles. Biochem Biophys Res Commun. 1973 Nov 1;55(1):224–230. doi: 10.1016/s0006-291x(73)80083-x. [DOI] [PubMed] [Google Scholar]
  28. Rothschild K. J., Marti T., Sonar S., He Y. W., Rath P., Fischer W., Khorana H. G. Asp96 deprotonation and transmembrane alpha-helical structural changes in bacteriorhodopsin. J Biol Chem. 1993 Dec 25;268(36):27046–27052. [PubMed] [Google Scholar]
  29. Sandorfy C. Intermolecular interactions and anesthesia. Anesthesiology. 1978 May;48(5):357–359. doi: 10.1097/00000542-197805000-00010. [DOI] [PubMed] [Google Scholar]
  30. Trissl H. W. Photoelectric measurements of purple membranes. Photochem Photobiol. 1990 Jun;51(6):793–818. [PubMed] [Google Scholar]
  31. Tóth-Boconádi R., Taneva S. G., Keszthelyi L. Non-proton ion release in purple membrane. Biophys J. 1994 Dec;67(6):2490–2492. doi: 10.1016/S0006-3495(94)80737-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Uruga T., Hamanaka T., Kito Y., Uchida I., Nishimura S., Mashimo T. Effects of volatile anesthetics on bacteriorhodopsin in purple membrane, Halobacterium halobium cells and reconstituted vesicles. Biophys Chem. 1991 Nov;41(2):157–168. doi: 10.1016/0301-4622(91)80015-j. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES