Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Feb;70(2):1036–1044. doi: 10.1016/S0006-3495(96)79649-2

Remodeling the shape of the skeleton in the intact red cell.

J K Khodadad 1, R E Waugh 1, J L Podolski 1, R Josephs 1, T L Steck 1
PMCID: PMC1225005  PMID: 8789122

Abstract

The role of the membrane skeleton in determining the shape of the human red cell was probed by weakening it in situ with urea, a membrane-permeable perturbant of spectrin. Urea by itself did not alter the biconcave disk shape of the red cell; however, above threshold conditions (1.5 M, 37 degrees C, 10 min), it caused an 18% reduction in the membrane elastic shear modulus. It also potentiated the spiculation of cells by lysophosphatidylcholine. These findings suggest that the contour of the resting cell is not normally dependent on the elasticity of or tension in the membrane skeleton. Rather, the elasticity of the skeleton stabilizes membranes against deformation. Urea treatment also caused the projections induced both by micropipette aspiration and by lysophosphatidylcholine to become irreversible. Furthermore, urea converted the axisymmetric conical spicules induced by lysophosphatidylcholine into irregular, curved and knobby spicules; i.e., echinocytosis became acanthocytosis. Unlike controls, the ghosts and membrane skeletons obtained from urea-generated acanthocytes were imprinted with spicules. These data suggest that perturbing interprotein associations with urea in situ allowed the skeleton to evolve plastically to accommodate the contours imposed upon it by the overlying membrane.

Full text

PDF
1036

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev. 1990 Oct;70(4):1029–1065. doi: 10.1152/physrev.1990.70.4.1029. [DOI] [PubMed] [Google Scholar]
  2. Bennett V. The spectrin-actin junction of erythrocyte membrane skeletons. Biochim Biophys Acta. 1989 Jan 18;988(1):107–121. doi: 10.1016/0304-4157(89)90006-3. [DOI] [PubMed] [Google Scholar]
  3. Calvert R., Ungewickell E., Gratzer W. A conformational study of human spectrin. Eur J Biochem. 1980 Jun;107(2):363–367. doi: 10.1111/j.1432-1033.1980.tb06037.x. [DOI] [PubMed] [Google Scholar]
  4. Canham P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol. 1970 Jan;26(1):61–81. doi: 10.1016/s0022-5193(70)80032-7. [DOI] [PubMed] [Google Scholar]
  5. Chasis J. A., Shohet S. B. Red cell biochemical anatomy and membrane properties. Annu Rev Physiol. 1987;49:237–248. doi: 10.1146/annurev.ph.49.030187.001321. [DOI] [PubMed] [Google Scholar]
  6. Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987;49:177–192. doi: 10.1146/annurev.ph.49.030187.001141. [DOI] [PubMed] [Google Scholar]
  7. Christiansson A., Kuypers F. A., Roelofsen B., Op den Kamp J. A., van Deenen L. L. Lipid molecular shape affects erythrocyte morphology: a study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase C or phospholipase A2. J Cell Biol. 1985 Oct;101(4):1455–1462. doi: 10.1083/jcb.101.4.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Di Stasi A. M., Petrucci T. C., Minetti M. Comparison of thermal properties of bovine spectrin and fodrin. Arch Biochem Biophys. 1987 Jul;256(1):144–149. doi: 10.1016/0003-9861(87)90432-2. [DOI] [PubMed] [Google Scholar]
  9. Discher D. E., Mohandas N., Evans E. A. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science. 1994 Nov 11;266(5187):1032–1035. doi: 10.1126/science.7973655. [DOI] [PubMed] [Google Scholar]
  10. Elgsaeter A., Stokke B. T., Mikkelsen A., Branton D. The molecular basis of erythrocyte shape. Science. 1986 Dec 5;234(4781):1217–1223. doi: 10.1126/science.3775380. [DOI] [PubMed] [Google Scholar]
  11. Evans E. A. Bending resistance and chemically induced moments in membrane bilayers. Biophys J. 1974 Dec;14(12):923–931. doi: 10.1016/S0006-3495(74)85959-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans E. A. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys J. 1980 May;30(2):265–284. doi: 10.1016/S0006-3495(80)85093-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  14. Farge E., Devaux P. F. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J. 1992 Feb;61(2):347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fischer T. M. Cross bonding and stiffening of the red cell membrane. Biochim Biophys Acta. 1989 Oct 16;985(2):218–228. doi: 10.1016/0005-2736(89)90367-2. [DOI] [PubMed] [Google Scholar]
  16. Hainfeld J. F., Steck T. L. The sub-membrane reticulum of the human erythrocyte: a scanning electron microscope study. J Supramol Struct. 1977;6(3):301–311. doi: 10.1002/jss.400060303. [DOI] [PubMed] [Google Scholar]
  17. Hochmuth R. M., Waugh R. E. Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol. 1987;49:209–219. doi: 10.1146/annurev.ph.49.030187.001233. [DOI] [PubMed] [Google Scholar]
  18. Johnson R. M., Taylor G., Meyer D. B. Shape and volume changes in erythrocyte ghosts and spectrin-actin networks. J Cell Biol. 1980 Aug;86(2):371–376. doi: 10.1083/jcb.86.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Khodadad J. K., Weinstein R. S., Marsh L. W., Steck T. L. Shape determinants of McLeod acanthocytes. J Membr Biol. 1989 Mar;107(3):213–218. doi: 10.1007/BF01871936. [DOI] [PubMed] [Google Scholar]
  20. Khodadad J. K., Weinstein R. S. The band 3-rich membrane of llama erythrocytes: studies on cell shape and the organization of membrane proteins. J Membr Biol. 1983;72(3):161–171. doi: 10.1007/BF01870583. [DOI] [PubMed] [Google Scholar]
  21. Kozlov M. M., Markin V. S. Model of red blood cell membrane skeleton: electrical and mechanical properties. J Theor Biol. 1987 Dec 21;129(4):439–452. doi: 10.1016/s0022-5193(87)80023-1. [DOI] [PubMed] [Google Scholar]
  22. Lange Y., Gough A., Steck T. L. Role of the bilayer in the shape of the isolated erythrocyte membrane. J Membr Biol. 1982;69(2):113–123. doi: 10.1007/BF01872271. [DOI] [PubMed] [Google Scholar]
  23. Lange Y., Hadesman R. A., Steck T. L. Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane. J Cell Biol. 1982 Mar;92(3):714–721. doi: 10.1083/jcb.92.3.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lange Y., Steck T. L. Mechanism of red blood cell acanthocytosis and echinocytosis in vivo. J Membr Biol. 1984;77(2):153–159. doi: 10.1007/BF01925863. [DOI] [PubMed] [Google Scholar]
  25. Liu S. C., Derick L. H., Duquette M. A., Palek J. Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts. Eur J Cell Biol. 1989 Aug;49(2):358–365. [PubMed] [Google Scholar]
  26. Lux S. E., John K. M., Karnovsky M. J. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest. 1976 Oct;58(4):955–963. doi: 10.1172/JCI108549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markle D. R., Evans E. A., Hochmuth R. M. Force relaxation and permanent deformation of erythrocyte membrane. Biophys J. 1983 Apr;42(1):91–98. doi: 10.1016/S0006-3495(83)84372-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
  29. Morrow J. S., Haigh W. B., Jr, Marchesi V. T. Spectrin oligomers: a structural feature of the erythrocyte cytoskeleton. J Supramol Struct Cell Biochem. 1981;17(3):275–287. doi: 10.1002/jsscb.380170308. [DOI] [PubMed] [Google Scholar]
  30. Palek J., Lambert S. Genetics of the red cell membrane skeleton. Semin Hematol. 1990 Oct;27(4):290–332. [PubMed] [Google Scholar]
  31. Rakow A. L., Hochmuth R. M. Effect of heat treatment on the elasticity of human erythrocyte membrane. Biophys J. 1975 Nov;15(11):1095–1100. doi: 10.1016/S0006-3495(75)85885-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmidt C. F., Svoboda K., Lei N., Petsche I. B., Berman L. E., Safinya C. R., Grest G. S. Existence of a flat phase in red cell membrane skeletons. Science. 1993 Feb 12;259(5097):952–955. doi: 10.1126/science.8438153. [DOI] [PubMed] [Google Scholar]
  33. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stokke B. T., Mikkelsen A., Elgsaeter A. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations. Eur Biophys J. 1986;13(4):219–233. doi: 10.1007/BF00260369. [DOI] [PubMed] [Google Scholar]
  35. Svetina S., Zeks B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J. 1989;17(2):101–111. doi: 10.1007/BF00257107. [DOI] [PubMed] [Google Scholar]
  36. Svoboda K., Schmidt C. F., Branton D., Block S. M. Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J. 1992 Sep;63(3):784–793. doi: 10.1016/S0006-3495(92)81644-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vertessy B. G., Steck T. L. Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants. Biophys J. 1989 Feb;55(2):255–262. doi: 10.1016/S0006-3495(89)82800-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Waugh R. E., Agre P. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J Clin Invest. 1988 Jan;81(1):133–141. doi: 10.1172/JCI113284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yoshino H., Marchesi V. T. Isolation of spectrin subunits and reassociation in vitro. Analysis by fluorescence polarization. J Biol Chem. 1984 Apr 10;259(7):4496–4500. [PubMed] [Google Scholar]
  40. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES