Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Mar;70(3):1112–1121. doi: 10.1016/S0006-3495(96)79693-5

Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field.

L Mathivet 1, S Cribier 1, P F Devaux 1
PMCID: PMC1225041  PMID: 8785271

Abstract

Giant unilamellar vesicles with diameters ranging from 10 to 60 microns were obtained by the swelling of phospholipid bilayers in water in the presence of an AC electric field. This technique leads to a homogeneous population of perfectly spherical and unilamellar vesicles, as revealed by phase-contrast optical microscopy and freeze-fracture electron microscopy. Freshly prepared vesicles had a high surface tension with no visible surface undulations. Undulations started spontaneously after several hours of incubation or were triggered by the application of a small osmotic pressure. Partially deflated giant vesicles could undergo further shape change if asymmetrical bilayers were formed by adding lyso compounds to the external leaflet or by imposing a transmembrane pH gradient that selectively accumulates on one leaflet phosphatidylglycerol. Fluorescence photobleaching with 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids or labeled dextran trapped within the vesicles enabled the measurement of the membrane continuity in the dumbbell-shaped vesicles. In all instances phospholipids diffused from one lobe to the other, but soluble dextran sometimes was unable to traverse the neck. This suggests that the diameter of the connecting neck may be variable.

Full text

PDF
1112

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Ziv R, Moses E. Instability and "pearling" states produced in tubular membranes by competition of curvature and tension. Phys Rev Lett. 1994 Sep 5;73(10):1392–1395. doi: 10.1103/PhysRevLett.73.1392. [DOI] [PubMed] [Google Scholar]
  2. Colleau M., Hervé P., Fellmann P., Devaux P. F. Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem Phys Lipids. 1991 Jan-Feb;57(1):29–37. doi: 10.1016/0009-3084(91)90046-e. [DOI] [PubMed] [Google Scholar]
  3. Devaux P. F., Mathivet L., Cribier S., Farge E. How lipid asymmetry can make vesicles fusion-competent by inhibition of the thermal undulations. Biochem Soc Trans. 1993 May;21(2):276–280. doi: 10.1042/bst0210276. [DOI] [PubMed] [Google Scholar]
  4. Döbereiner H. G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys J. 1993 Oct;65(4):1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farge E., Devaux P. F. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J. 1992 Feb;61(2):347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geldwerth D., de Kermel A., Zachowski A., Guerbette F., Kader J. C., Henry J. P., Devaux P. F. Use of spin-labeled and fluorescent lipids to study the activity of the phospholipid transfer protein from maize seedlings. Biochim Biophys Acta. 1991 Apr 3;1082(3):255–264. doi: 10.1016/0005-2760(91)90201-r. [DOI] [PubMed] [Google Scholar]
  7. Gompper G, Kroll DM. Phase diagram and scaling behavior of fluid vesicles. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jan;51(1):514–525. doi: 10.1103/physreve.51.514. [DOI] [PubMed] [Google Scholar]
  8. Hope M. J., Redelmeier T. E., Wong K. F., Rodrigueza W., Cullis P. R. Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Biochemistry. 1989 May 16;28(10):4181–4187. doi: 10.1021/bi00436a009. [DOI] [PubMed] [Google Scholar]
  9. Hope M. J., Wong K. F., Cullis P. R. Freeze-fracture of lipids and model membrane systems. J Electron Microsc Tech. 1989 Dec;13(4):277–287. doi: 10.1002/jemt.1060130403. [DOI] [PubMed] [Google Scholar]
  10. Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991 Oct;60(4):825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lasic D. D. The mechanism of vesicle formation. Biochem J. 1988 Nov 15;256(1):1–11. doi: 10.1042/bj2560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  13. Lipowsky R. The morphology of lipid membranes. Curr Opin Struct Biol. 1995 Aug;5(4):531–540. doi: 10.1016/0959-440x(95)80040-9. [DOI] [PubMed] [Google Scholar]
  14. Mui B. L., Döbereiner H. G., Madden T. D., Cullis P. R. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J. 1995 Sep;69(3):930–941. doi: 10.1016/S0006-3495(95)79967-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nezil F. A., Bayerl S., Bloom M. Temperature-reversible eruptions of vesicles in model membranes studied by NMR. Biophys J. 1992 May;61(5):1413–1426. doi: 10.1016/S0006-3495(92)81947-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Redelmeier T. E., Hope M. J., Cullis P. R. On the mechanism of transbilayer transport of phosphatidylglycerol in response to transmembrane pH gradients. Biochemistry. 1990 Mar 27;29(12):3046–3053. doi: 10.1021/bi00464a022. [DOI] [PubMed] [Google Scholar]
  17. Rädler JO, Feder TJ, Strey HH, Sackmann E. Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):4526–4536. doi: 10.1103/physreve.51.4526. [DOI] [PubMed] [Google Scholar]
  18. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  19. Seifert U, Berndl K, Lipowsky R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys Rev A. 1991 Jul 15;44(2):1182–1202. doi: 10.1103/physreva.44.1182. [DOI] [PubMed] [Google Scholar]
  20. Svetina S., Zeks B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J. 1989;17(2):101–111. doi: 10.1007/BF00257107. [DOI] [PubMed] [Google Scholar]
  21. Winterhalter M., Lasic D. D. Liposome stability and formation: experimental parameters and theories on the size distribution. Chem Phys Lipids. 1993 Sep;64(1-3):35–43. doi: 10.1016/0009-3084(93)90056-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES