Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;327:1–15. doi: 10.1113/jphysiol.1982.sp014215

Is the red cell calcium pump electrogenic?

J P Rossi, H J Schatzmann
PMCID: PMC1225092  PMID: 6288923

Abstract

1. In inside-out vesicles of high potassium permeability, prepared from human red cell membranes, volume changes accompanying the action of the Ca2+ pump were measured by recording the intensity of light scattered by a suspension of these vesicles. Replacing Cl- by the impermeant gluconate anion changed swelling into shrinking. 2. Assuming that in Cl- media two Cl- ions accompany one Ca+ ion moved by the pump and in gluconate media two K+ ions are exchanged for one Ca2+ ion resulted in a good agreement between relative Ca2+ transport rate obtained from the volume change and from direct measurement of 45Ca uptake in the two media. 3. The fact that it is possible to change co-transport of Ca with Cl- into counter-transport of Ca2+ for K+ rules out that within the pump there is an obligatory coupling of Ca2+ movement with movement of another ion species (including the proton). The conclusion, therefore, is that the Ca2+ pump must be electrogenic. 4. The combination of measurement of volume change with direct measurement of 45Ca movement yielded 5-6 microliter/mg protein for the volume of the vesicles.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenblum I., Chain E. Studies on the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):286–294. doi: 10.1042/bj0320286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond G. H., Green J. W. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane. Biochim Biophys Acta. 1971 Aug 13;241(2):393–398. doi: 10.1016/0005-2736(71)90038-1. [DOI] [PubMed] [Google Scholar]
  3. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  4. Kometani T., Kasai M. Ion movement accompanied by calcium uptake of sarcoplasmic reticulum vesicles studied through the osmotic volume change by the light scattering method. J Membr Biol. 1980 Sep 30;56(2):159–168. doi: 10.1007/BF01875967. [DOI] [PubMed] [Google Scholar]
  5. Kometani T., Kasai M. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method. J Membr Biol. 1978 Jul 18;41(4):295–308. doi: 10.1007/BF01871994. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Rossi J. P., Garrahan P. J., Rega A. F. Vanadate inhibition of active Ca2+ transport across human red cell membranes. Biochim Biophys Acta. 1981 Nov 6;648(2):145–150. doi: 10.1016/0005-2736(81)90029-8. [DOI] [PubMed] [Google Scholar]
  8. Sarkadi B., Macintyre J. D., Gárdos G. Kinetics of active calcium transport in inside-out red cell membrane vesicles. FEBS Lett. 1978 May 1;89(1):78–82. doi: 10.1016/0014-5793(78)80526-2. [DOI] [PubMed] [Google Scholar]
  9. Sarkadi B., Szász I., Gárdos G. Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles. Biochim Biophys Acta. 1980 May 23;598(2):326–338. doi: 10.1016/0005-2736(80)90010-3. [DOI] [PubMed] [Google Scholar]
  10. Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schatzmann H. J. Role of magnesium in the (Ca2+ + Mg2+)-stimulated membrane ATPase of human red blood cells. J Membr Biol. 1977 Jun 30;35(2):149–158. doi: 10.1007/BF01869946. [DOI] [PubMed] [Google Scholar]
  12. Schatzmann H. J., Rossi G. L. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport. Biochim Biophys Acta. 1971 Aug 13;241(2):379–392. doi: 10.1016/0005-2736(71)90037-x. [DOI] [PubMed] [Google Scholar]
  13. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  14. Waisman D. M., Gimble J. M., Goodman D. B., Rasmussen H. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. II. Stimulation of the Ca2+ pump by phosphate. J Biol Chem. 1981 Jan 10;256(1):415–419. [PubMed] [Google Scholar]
  15. Waisman D. M., Gimble J. M., Goodman D. B., Rasmussen H. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. III. Stimulation of the Ca2+ pump by anions. J Biol Chem. 1981 Jan 10;256(1):420–424. [PubMed] [Google Scholar]
  16. Weiner M. L., Lee K. S. Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes. J Gen Physiol. 1972 Apr;59(4):462–475. doi: 10.1085/jgp.59.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES