Abstract
1. Effects of hypertonic solutions prepared by adding NaCl or sucrose to Krebs solution on intracellular potentials were observed in neurones of the supraoptic nucleus using brain slices of the guinea-pig hypothalamus. 2. Hypertonic solutions (306-488 m-osmole/kg) depolarized the membrane, increased the input resistance and augmented the spontaneous firing rate in supraoptic neurones, whereas cells in the hippocampus and anterior or ventromedial hypothalamus were not affected by the hypertonic solutions. 3. The excitatory action of hypertonic solutions on supraoptic neurones was retained in the medium containing 0 mM-Ca2+ and 12 mM-Mg2+. 4. Amplitude of the depolarization induced by superfusion of hypertonic solutions was voltage-dependent. The reversal potential for the depolarization was about -90 mV. 5. The reversal potential for the depolarization induced by hypertonic solution shifted as a function of [K+]0. 6. These results suggest that the supraoptic neurones are themselves osmosensitive and that the local osmotic-related information is transduced to neural signals in these cells by alteration in the membrane ionic permeability, probably due to suppression of K+ conductance.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brimble M. J., Dyball R. E., Forsling M. L. Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. J Physiol. 1978 May;278:69–78. doi: 10.1113/jphysiol.1978.sp012293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLEMENTE C. D., SUTIN J., SILVERSTONE J. T. Changes in electrical activity of the medulla on the intravenous injection of hypertonic solutions. Am J Physiol. 1957 Jan;188(1):193–198. doi: 10.1152/ajplegacy.1956.188.1.193. [DOI] [PubMed] [Google Scholar]
- Cross B. A., Dyball R. E., Dyer R. G., Jones C. W., Lincoln D. W., Morris J. F., Pickering B. T. Endocrine neurons. Recent Prog Horm Res. 1975;31:243–294. doi: 10.1016/b978-0-12-571131-9.50011-6. [DOI] [PubMed] [Google Scholar]
- Dyball R. E. Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units. J Physiol. 1971 Apr;214(2):245–256. doi: 10.1113/jphysiol.1971.sp009430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyball R. E., Prilusky J. Responses of supraoptic neurones in the intact and deafferented rat hypothalamus to injections of hypertonic sodium chloride. J Physiol. 1981 Feb;311:443–452. doi: 10.1113/jphysiol.1981.sp013596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haller E. W., Brimble M. J., Wakerley J. B. Phasic discharge in supraoptic neurones recorded from hypothalamic slices. Exp Brain Res. 1978 Sep 15;33(1):131–134. doi: 10.1007/BF00238799. [DOI] [PubMed] [Google Scholar]
- Hatton G. I., Armstrong W. E., Gregory W. A. Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus. Brain Res Bull. 1978 Sep-Oct;3(5):497–508. doi: 10.1016/0361-9230(78)90079-5. [DOI] [PubMed] [Google Scholar]
- Hayward J. N. Functional and morphological aspects of hypothalamic neurons. Physiol Rev. 1977 Jul;57(3):574–658. doi: 10.1152/physrev.1977.57.3.574. [DOI] [PubMed] [Google Scholar]
- Leng G. Rat supraoptic neurones: the effects of locally applied hypertonic saline. J Physiol. 1980 Jul;304:405–414. doi: 10.1113/jphysiol.1980.sp013332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malmo R. B. Osmosensitive neurons in the rat's dorsal midbrain. Brain Res. 1976 Mar 19;105(1):105–120. doi: 10.1016/0006-8993(76)90926-4. [DOI] [PubMed] [Google Scholar]
- Mason W. T. Supraoptic neurones of rat hypothalamus are osmosensitive. Nature. 1980 Sep 11;287(5778):154–157. doi: 10.1038/287154a0. [DOI] [PubMed] [Google Scholar]
- Ogata N. Electrophysiology of mammalian hypothalamic and interpeduncular neurons in vitro. Experientia. 1979 Sep 15;35(9):1202–1203. doi: 10.1007/BF01963289. [DOI] [PubMed] [Google Scholar]
- Ogata N., Ueno S. Mode of activation of pyramidal neurons by mossy fiber stimulation in thin hippocampal slices in vitro. Exp Neurol. 1976 Nov;53(2):567–584. doi: 10.1016/0014-4886(76)90092-3. [DOI] [PubMed] [Google Scholar]
- Peck J. W., Blass E. M. Localization of thirst and antidiuretic osmoreceptors by intracranial injections in rats. Am J Physiol. 1975 May;228(5):1501–1509. doi: 10.1152/ajplegacy.1975.228.5.1501. [DOI] [PubMed] [Google Scholar]
- Scholfield C. N. A depolarizing inhibitory potential in neurones of the olfactory cortex in vitro. J Physiol. 1978 Feb;275:547–557. doi: 10.1113/jphysiol.1978.sp012207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sladek C. D., Knigge K. M. Osmotic control of vasopressin release by rat hypothalamo-neurohypophyseal explants in organ culture. Endocrinology. 1977 Dec;101(6):1834–1838. doi: 10.1210/endo-101-6-1834. [DOI] [PubMed] [Google Scholar]
- Weiss C. S., Almli C. R. Lateral preoptic and lateral hypothalamic units: in search of the osmoreceptors for thirst. Physiol Behav. 1975 Dec;15(6):713–722. doi: 10.1016/0031-9384(75)90124-9. [DOI] [PubMed] [Google Scholar]
- Yamamoto C., McIlwain H. Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem. 1966 Dec;13(12):1333–1343. doi: 10.1111/j.1471-4159.1966.tb04296.x. [DOI] [PubMed] [Google Scholar]

